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BEST 
Achieving the BEnefits of SWIM by making smart use of Semantic 
Technologies 
This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under 
grant agreement No 699298 under the European Union’s Horizon 2020 research and innovation 
programme. 

Abstract/Executive Summary 
Effective use of the Semantic Container approach developed in BEST depends on the existence of a 
Semantic Container Management system controlling the replication, distribution and consistency of 
containers. The deliverable provides a metamodel describing the information needed to implement 
such a Semantic Container Management System. 

In the field of distributed databases, there are many existing techniques for distribution, replication 
and consistency management, mostly based on a single generic data model. In BEST we refine this, 
using different types of models for different kinds of information. 

High availability of information and low network load are key goals for the success of the SWIM 
approach. Semantic containers, supported by a Semantic Container Management System, can 
contribute significantly to these goals. 

The metamodel distinguishes between logical and physical containers, and indicates which containers 
are allocated to which nodes. It also allows definition of versions of containers, supporting consistency 
management and different forms of synchronization. Finally, the metamodel allows for traceability of 
data provenance, and definition of composite containers that gather data from lower-level elementary 
containers. 

We illustrate the proposed metamodel using NOTAMs as example. We stress, however, that the 
semantic container approach applies to other types of ATM information as well. 

The deliverable also outlines the architecture of a Semantic Container Management system, describing 
the distribution of the metadata and software components needed to implement it. 
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1 Introduction: About this document1 
1.1 Purpose 
The Grant Agreement describes the content of this deliverable as follows: 

“This deliverable comprises an ontology-based language for describing data distribution, including data 
lineage and freshness requirements.” 

In this context, the term “language” means a way of describing, in a formalised way, all the information 
that is needed to make effective use of semantic containers in information systems (such as SWIM) 
where data can be replicated and distributed to multiple locations. 

Effective use of semantic containers depends on the existence of a Semantic Container Management 
System: software that manages the job of caching of containers, deciding where replicas should be 
stored, and maintaining consistency between them. Deliverable 3.2 provides a prototype of such a 
system; it is the purpose of this deliverable to provide the language needed to implement the semantic 
container management system. 

The “language” provided by the deliverable is a metamodel for semantic container management, 
expressed as a collection of UML diagrams. The UML diagrams constitute an ontology complementary 
to the various existing ATM domain ontologies (see D 1.1), and translate into an RDF vocabulary that 
can be used in the implementation of a prototype semantic container management system (see D 3.2). 
The metamodel covers aspects of semantic container distribution and replication, consistency 
management, and provenance (semantic container lineage). A semantic container’s quality metadata 
indicate actual freshness and expected freshness of the contained ATM information. 

The deliverable goes beyond its original scope by also introducing (in Appendix A, see Section 10) initial 
ideas on the concept of ATM information cubes. This concept provides a form of semantic container 
distribution that may serve as the basis for future research. 

1.2 Intended readership 
This document is primarily targeted towards people having an interest in 

• ATM information exchange 
• Application of semantic technologies in ATM 
• System Wide Information Management (SWIM) 

                                                             

 

1 The opinions expressed herein reflect the author’s view only. Under no circumstances shall the SESAR Joint Undertaking be 
responsible for any use that may be made of the information contained herein. 
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1.3 Relationship to other deliverables 
Deliverable Relationship 

D 1.1 Experimental ontology modules formalising 
concept definition of ATM data 

The ontology modules developed in D 1.1 can serve 
as the fundamental for the faceted ontology-based 
description of semantic containers. The semantic 
container metamodel described in this deliverable 
represents an ontology complementary to existing 
ATM domain ontologies. 

D 2.1 Techniques for ontology-based data 
description and discovery in a decentralized 
SWIM knowledge base 

The concept of semantic containers and the 
fundamentals for definition and discovery are defined 
in D 2.1, which are re-used in this deliverable. 

D 3.1 Prototype Use Case Scenarios The scenarios described in D 3.1 provide the scope for 
the semantic container approach. 

D 3.2 Prototype SWIM-enabled applications The prototype semantic container management 
system in D 3.2 builds on the concepts described in 
this deliverable. 

D 4.4 Tutorial for Software Developers The tutorial will describe how software developers 
can write SWIM applications using semantic 
containers for data management and discovery. 

D 5.1 Scalability Guidelines for Semantic SWIM-
based Applications 

D 5.1 formally investigates scalability aspects of the 
semantic container approach. 

D 5.2 Ontology Modularisation Guidelines for SWIM The guidelines will describe how to develop ontology 
modules for the semantic container approach. 

1.4 Relationship to Publications 
A work-in-progress version of the research presented in the main body of this deliverable was 
published as a paper [1] in the Proceedings of the Integrated Communications Navigation and 
Surveillance Conference 2018. Furthermore, the material in the appendix will be presented at the 2018 
Congress of the International Council of the Aeronautical Sciences; a paper is currently under review 
for a recommendation letter. An extended version of that paper will be submitted for a special issue 
of the Aeronautical Journal, following an invitation of the program committee based upon the original 
submission of the extended abstract. Some parts of the text of this document are copied directly from 
parts of these papers. 

1.5 Acronyms and abbreviations 
Acronym/Abbreviation Explanation 

ANSP Air Navigation Service Provider 

AIRM ATM Information Reference Model 

AIXM Aeronautical Information Exchange Model 

ATM Air Traffic Management 

DNOTAM Digital NOTAM 
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Acronym/Abbreviation Explanation 

EFB Electronic Flight Bag 

F-Logic Frame Logic 

FIXM Flight Information Exchange Model 

IWXXM ICAO Meteorological Information Exchange Model 

METAR Meteorological Aerodrome Report 

NOTAM Notice To Airmen 

OLAP Online Analytical Processing 

OWL Web Ontology Language 

RDF Resource Description Framework 

RDFS RDF Schema 

SESAR Single European Sky ATM Research 

SPARQL SPARQL Protocol and RDF Query Language 

TAF Terminal Aerodrome Forecast 

UML Unified Modelling Language 

W3C World Wide Web Consortium 

WSDOM Web Service Description Ontological Model 

XML Extensible Markup Language 
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2 Background 
In this chapter, we briefly present background information on data distribution and replication, 
consistency management in distributed databases, and data provenance. We briefly explain the role 
of semantic container distribution for SWIM in a separate chapter (Chapter 3). 

2.1 Distribution and replication 
The algebra of qualified relations [2] is a well-established approach to distributed database 
management, which serves as a main inspiration for container versioning and consistency 
management in a distributed environment. We adapt the concept for SWIM information services and 
extend the concept with semantic labels to support the management of containers, specifically the 
discovery but also the description of container lineage and provenance. 

Related work investigates the integration of information related to flights in a data lake [3]. In a sense, 
the semantic container approach can be considered an ontology-based, structured data lake approach. 
Other work [4] investigates the design and execution of web service workflow, metadata management 
has been identified an important topic [5]. Derivation chains of semantic containers provide a data-
centric view on information service workflows. 

Zand and Schandl [6] propose to use “Semantic Web technologies to build comprehensive descriptions 
of user’s information needs based on contextual information, and employs these descriptions to 
selectively replicate data from external sources.” This approach is about keeping on mobile devices 
local copies of relevant data, so that an application on the mobile device can operate also without 
network connectivity. 

Replication of semantic containers is related to distribution and replication of (dynamic) XML 
documents [7, 8]. In comparison to existing approaches, BEST semantic containers offer a unique 
combination of version management, distribution and replication, and fine-grained provenance 
tracking. Instead of relying on a single generic data model (like XML), the semantic container approach 
uses different data/knowledge models for different kinds of information (XML for data, RDF for 
metadata, OWL for semantic labels) to get the best of all worlds. In contrast to generic XML-based 
approaches, the Semantic Container approach leverages the specifics of ATM information exchange, 
with data items like NOTAMs and METARs constituting the lowest grain of fragmentation. 

Metwally et al. [9] model datacenter resources for infrastructure-as-a-service (IaaS) using an ontology 
model and employs reasoning for the allocation of resources. 

2.2 Consistency management 
In database replication, eager and lazy approaches can be considered [10]. Distributed semantic 
container management could follow both an eager and lazy replication approach, depending on the 
criticality of the data – for non-safety critical data, lazy replication may be preferable due to the lower 
replication costs. Lightweight approaches to versioning also for database systems have recently been 
proposed, e.g., OrpheusDB [11]. When datasets are collaboratively authored, version management is 
of importance and appropriate techniques for version management in the spirit of common version 
control systems must be developed [12]. 
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2.3 Provenance 
The PROV-O ontology [13] considers activities that are associated with an agent and use entities that 
were themselves generated by activities and derived from other entities. The semantic container 
approach builds on that provenance concept by considering services (activities) that are associated 
with a service provider (agent) and use containers (entities) that were themselves generated by 
services (activities) and derived from other containers (entities). 
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3 Semantic container distribution and SWIM 
With respect to data distribution as described in this deliverable, the benefits of the semantic container 
approach for the SWIM concept are described in D 3.1 as follows:  

• High availability of information: Semantic containers are packages of ATM information that 
can be redundantly allocated on various server nodes for increased availability. 

• Decreased network load: Redundant allocation of semantic containers also reduces network 
load as SWIM information services may cache frequently used packages of ATM information 
for reuse. 

In the following, we briefly summarize these main advantages of the semantic container approach’s 
distribution concept for SWIM according to D 3.1. We refer to D 3.1 for further information. 

3.1 High availability of information 
In SWIM, different applications require different types of ATM information at various degrees of 
freshness and availability. An aircraft pilot may, for example, request current weather data. For 
availability’s sake, consistency may be sacrificed: Slightly outdated weather information is better for a 
pilot than none at all. With respect to notifications about runway closures, on the other hand, pilots 
require fresh data because wrong information would entail potentially disastrous consequences. 
Semantic containers allow to make the inherent trade-off between freshness and high availability 
tangible for the consumer of ATM information: A semantic container packages ATM information, the 
resulting packages can be redundantly stored at multiple locations for high availability, administrative 
metadata indicate freshness and data quality. 

Semantic containers also increase availability of the overall system by considering multiple sources of 
ATM information which semantic containers may be derived from. The semantic container metamodel 
as presented in this deliverable allows for the representation of multiple data sources for the same 
semantic container. A semantic container management system (see Section 1.1 and Section 7) may 
switch dynamically and transparently between different sources. Different sources may provide the 
same data with different quality in order to ensure that the consumer is alert to any reduction in quality 
of service. A primary source is a source with the highest data quality among the sources of the 
container. Secondary sources of lesser quality are only used when no primary source is available at the 
expected freshness. 

A particular advantage of packaging ATM information in semantic containers is the possibility to 
allocate relevant information directly in the aircraft that operates a specific flight. The semantic 
container can be created a couple of days prior to the date the actual flight takes place, being filled 
with relevant information in advance. Shortly before the flight, at the departure airport with high 
bandwidth, the container can be uploaded onto the plane, and during the flight updated with only the 
critical information or information that requires only a low bandwidth. 

ATM information is inherently dynamic: Government authorities and authoritative sources push new 
data and updates to existing data. Hence, the semantic container approach requires a mechanism to 
keep the contained ATM information up to date. The proposed semantic container metamodel paves 
the way for both push- and pull-based handling of updates. 
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3.2 Decreased network load and computation effort 
Semantic containers allow SWIM services to cache frequently requested ATM information (e.g., 
weather data) for reuse. Multiple service providers may request the same ATM information from a 
remote entity. Typically, each request for ATM information is processed individually, thereby putting 
stress on the available bandwidth. With a semantic container management system in place, SWIM 
services may cache frequently requested ATM information as semantic containers at locations where 
they are frequently needed, thereby reducing the bandwidth and computation effort, including human 
processing and approval. For example, a NOTAM filtering service may cache relevant NOTAMs for the 
most important flight routes as semantic containers. When concrete requests for specific flights come 
in, rather than sifting through the whole body of NOTAMs currently in place, the service may use the 
pre-filtered semantic containers as a starting point for further filtering. 
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4 Distribution and replication 
In the following, we present UML class diagrams that translate into an RDF vocabulary for the ontology-
based management of semantic container distribution and replication (see D 3.2). The UML models 
themselves can be considered an ontology for semantic container management, which allows for the 
combination with other ATM ontologies and ontology modules (see D 1.1) that serve for the faceted 
semantic description of packages of ATM information (see D 2.1). 

4.1 Logical containers 
In analogy to the well-known ANSI/SPARC architecture for database management systems [14] as well 
as theory on distributed databases which considers logical and physical fragments [2], we distinguish 
between logical and physical aspects of semantic container management. In this respect, the word 
“logical” relates to information independent from its storage location and the word “physical” relates 
to information that is stored at a particular site. A semantic container is primarily a logical unit of data 
items with a semantic label that states a membership condition for data items. The membership 
condition expresses a commitment by the creator of the container: The semantic container comprises 
all data items that satisfy the membership condition (see D 2.1). 

Figure 1 illustrates the metamodel of the faceted membership condition that is part of the semantic 
label. Facets are dimensions of semantic description, and can be classified into spatial, temporal, and 
other semantic facets. For example, a spatial facet may describe the geographic focus of the DNOTAMs 
in a semantic container, a temporal facet the time of validity of the DNOTAMs, another semantic facet 
may refer to the type of aircraft for which the contained DNOTAMs are relevant. 

The facet values that a semantic label assigns for each facet come from an ontology. For example, a 
DNOTAM container may contain DNOTAMs relevant for fixed-wing aircraft, with fixed-wing aircraft 
being represented by a concept in an ontology derived from the ATM Information Reference Model 
(AIRM). A single facet may be defined by multiple ontologies, and the same ontology may serve to 
define the same facet. 

Figure 2 illustrates instantiation of the metamodel in Figure 1. The container METARs<Region: LSAS> 
has the LSAS concept from the AIRM ontology as value for the Geography spatial facet. Similarly, the 
container METARs<Region: EDGG> has the EDGG concept from some ontology as value for the 
Geography spatial facet. 

Besides the semantic label, a logical container may also have administrative metadata (Figure 3). These 
administrative metadata may be technical or quality metadata (see D 2.1). The metamodel of the 
semantic container approach is intentionally flexible on what kind of administrative metadata is 
included. Logical containers may have any kind and number of administrative metadata attributes. To 
an administrative metadata attribute, a logical container assigns a literal value. In the logical view of 
semantic containers, administrative metadata may refer to the expected accuracy of the contained 
data items (quality metadata), e.g., of weather forecasts. Similarly, technical metadata may state 
permissible data formats, e.g., XML or JSON. Other quality metadata may define the expected update 
frequency of the semantic container. 
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In a distributed SWIM environment, the semantic description and the administrative metadata of the 
containers is important in order to find logical containers that fit a specific information need and 
requirements with respect to data quality and technical characteristics (such as data format). In a 
repository of logical containers, users and applications may look for containers with a certain content 
and properties. The actual content for a logical container may then be retrieved from different storage 
locations. Each logical container may have multiple copies, or replicas: These copies are the physical 
containers, which we describe in the next section. 

 
Figure 1. Class diagram “Facet” in the logical view: Logical containers and their semantic labels 

class Facet

SemanticLabel Facet

LogicalContainer

Ontology

ConceptSemanticLabelToFacet

SpatialFacet TemporalFacet SemanticFacet

*

definedBy

*

1..*

1

1

+membershipCondition1

*

+facetValue

1

* 1..*

 
Figure 2. Object diagram “Facet”: Examples of logical containers and their semantic labels 

object Facet

METARs<Region: LSAS>: 
LogicalContainer

METARs<Region: EDGG>: 
LogicalContainer

:SemanticLabel
Geography: 
SpatialFacet:SemanticLabelToFacet

LSAS: Concept :Ontology

:SemanticLabel :SemanticLabelToFacet

EDGG: Concept

+membershipCondition

+membershipCondition

+facetValue

+facetValue

definedBy
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4.2 Physical containers and their allocation 
A semantic container can also be an actual physical package of data items, meaning that each logical 
semantic container also may have an allocation at a specific physical server location as well as replicas 
at multiple other locations (see Figure 4). For example, as illustrated in Figure 5, a logical semantic 
container with all DNOTAMs for a flight from Zurich to Frankfurt may be allocated on servers at Zurich 
airport and Frankfurt airport, or on the aircraft that conducts a specific flight from Munich to Frankfurt. 
Note that the Location class in the metamodel refers to a server or virtual machine, and not to an 
actual geographic location. For example, Zurich airport may have multiple server locations. The class 
EntityElementaryLogicalContainer in the object diagram refers to a container that only contains data 
items of a specific kind, e.g., NOTAMs, as opposed to a composite container (see Section 6.3). 

We opt for a simple, yet powerful, distribution and replication concept: Each logical semantic container 
has one primary copy stored at some location, and potentially multiple replicas (secondary copies) 
stored at other locations. We note, however, that also other distribution and replication concepts may 
be considered, including decentralized solutions and reference-only containers. The former refers to a 
solution where no copy of a logical container is a designated primary. The latter refers to containers 
that have no physical materialization but are only logical concepts materialized upon request. We 
further discuss push- and pull-based consistency management in Section 5.2. 

A physical container represents one copy of a logical container stored at a location. The logical 
container’s primary allocation is the location of the physical container that is the logical container’s 
primary copy. The secondary copies must be kept in sync with the primary copy. The local container 
management systems on each location may subscribe to receive updates for the secondary copies of 
a specific logical container that these locations hold. Alternatively, a pull-based approach may be 
followed. In that case, a physical container must store the date when the last sync with its primary 
copy has occurred, in order to be able to judge whether a synchronization should be attempted or not, 
which is also a form of administrative metadata. 

 
Figure 3. Class diagram “Administrative” in the logical view: Logical containers and their administrative metadata 

class Administrative

AdministrativeMetadataLogicalContainer

LogicalContainerToAdministrativeMetadata Literal

TechnicalMetadata QualityMetadata

* *

*

+value

1
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Figure 4. Class diagram “Allocation” in the physical view: Replication of semantic containers 

class Allocation

PhysicalContainer

Logical::LogicalContainer

Location

0..1

+secondaryCopy *

*

+/secondaryAllocation *

*

+allocation

1

0..1

+primaryCopy 1

*

+/primaryAllocation 1
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pushUpdatesTo

+subscriber*

 
Figure 5. Object diagram “Allocation”: Examples of replication of semantic containers 

object Allocation

ServerZurich1: 
Location

ServerFrankfurt1: 
Location

EFBAircraft1: 
Location

NOTAMs<Route: ZRH-FRA>: 
EntityElementaryLogicalContainer

C1: EntityElementaryPhysicalContainer

C2: EntityElementaryPhysicalContainer

C3: EntityElementaryPhysicalContainer

+secondaryCopy
+/secondaryAllocation

+secondaryCopy +/secondaryAllocation

+allocation

+/primaryAllocation pushUpdatesTo

+subscriber

+allocation

+allocation

+primaryCopy
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Figure 6. Class diagram “Administrative” in the physical view: Physical containers and their administrative metadata 

class Administrative

PhysicalContainer AdministrativeMetadata

PhysicalContainerToAdministrativeMetadata Literal

TechnicalMetadata QualityMetadata

* *

*

+value

1

 
Figure 7. Object diagram “PhysicalAdministrative”: Technical metadata of physical containers 

object PhysicalAdministrative

C1: EntityElementaryPhysicalContainer

C2: EntityElementaryPhysicalContainer

NOTAMs<Route: ZRH-FRA>: 
EntityElementaryLogicalContainer

lastSyncWithPrimaryCopy: 
TechnicalMetadata
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Literal

lastUpdateFromPrimarySource: 
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:PhysicalContainerToAdministrativeMetadata

23/03/2018 03:00 PM: 
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23/03/2017 03:15 PM: 
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Each physical container may thus also have administrative metadata (Figure 6), independently from 
the logical container and the other physical replicas. An administrative metadata attribute may hence 
be the date and time of the last synchronization of a secondary physical container with the 
corresponding primary copy. An administrative metadata attribute may also be the date and time of 
the last update or last check for updates of a physical container from the source containers from which 
the container has been derived (see Chapter 6 for more information on container provenance). 
Figure 7 illustrates administrative data attributes of physical semantic containers. The NOTAM 
container for the route from Zurich to Frankfurt has a primary copy and a secondary copy at some 
locations (not shown in the diagram). Assume the logical container is derived from another source 
container. The C1 primary copy of the container has attributes that indicate when the last update from 
a primary source took place and when the last check for updates from the primary source took place. 
The C2 secondary copy of the container has an attribute that indicates when the last synchronization 
with the primary copy took place. 

4.3 Determining allocation sites 
The semantic description of the container contents may serve to determine beneficial allocation sites 
with the goal to improve performance, availability, or both. Spatial facet values could serve to allocate 
containers on different servers. For example, knowing that a container contains the data for a specific 
flight, the container could be allocated on servers at the departure and arrival airports, as well as 
nearby airports relevant for the route. In order for that approach to work, ontological concepts used 
for the faceted semantic description of data containers would have to be linked with server locations. 
Similarly, time facets may serve to identify packages of information that are only relevant for ex post 
analysis and are not operation-critical because the date has already passed. 

We refer to literature on distributed database systems [2] for specific algorithms. The semantic facets 
may serve as additional parameters for deciding where to allocate a container. Containers may either 
be allocated at a single, most-beneficial allocation site using a best-fit algorithm, or allocated at 
multiple locations using an all-beneficial-sites algorithm. 

The semantic container approach – and the metamodel described in this paper – allows for the 
consideration of the semantics of ATM information packages as criteria for the allocation decision. 
These decisions, however, are dependent on the specific business case. 
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5 Consistency management 
Concerning updates to semantic containers, we distinguish containers that keep versions from 
containers that do not. Unversioned containers consist of contents and when that content changes, 
the previous content is forgotten. For auditability’s sake, however, versioned containers are preferred 
since they allow to rebuild past states of information that led to certain decisions, which is important 
in the case of accidents and failures. 

5.1 Versioning2 of semantic containers 
A versioned logical container has multiple versions of its contents as well as one current version (see 
Figure 8). Physically, only the versioned elementary containers have actual datasets (see Figure 9). A 
composite container’s datasets (see Section 6.3) are its component physical containers’ datasets. Now 
an elementary physical container has an initial dataset, and each update adds a delta set to the physical 
container. Concerning the composition of the physical container’s current version, we consider two 
possibilities: Either the delta set adds to the set of valid data items – meaning that after the first 
update, the initial set plus the delta set constitute the container’s current version – or the delta set 
replaces the previous sets and becomes the sole constituent of the current version. Either way, all 
delta sets are preserved for future auditability. Each data set also stores its creation time for audit 
purposes. 

In case the primary copy is not reachable for synchronization, the secondary copies may be updated 
through other secondary copies, or alternative sources. In that case, however, should the alternative 
source be a non-primary source of information (see Chapter 6), the added dataset is a degenerated 
dataset. A version that consists of at least one degenerated dataset is a degenerated version. In that 
case, the contents of the physical version are likely of lesser quality than those of a regular physical 
version, or do not fully meet expected freshness requirements. Once the primary copy becomes 
available again, the degenerated datasets can be replaced by the regular sets in the current version, 
but are kept for audit purposes. 

The administrative metadata captured for physical containers, although flexible, should include at least 
the following for the purposes of our distribution concept with one primary copy: 

• lastSynchronizationWithPrimaryCopy: When was the physical container last synchronized 
with the corresponding primary copy. 

• lastCheckForSynchronizationWithPrimaryCopy: When was the primary copy last checked for 
updates that must also be applied to the secondary copy. 

• lastSynchronizationWithSecondaryCopy: When was the physical container last synchronized 
with a secondary copy. 

A versioned composite physical container consists of multiple component (versioned) physical 
containers. The datasets of a composite container derive from the datasets of its components. Note 

                                                             

 

2 In the field of configuration management, “version” is a generic term that can refer either to “revision” (changes over time, 
made in sequence) or “variant” (changes made in parallel, e.g. to adapt to different platforms). To be precise: in this document 
we are using “version” to refer to revisions. We use “version” as it as more widely understood term.  
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that all components of a composite container are allocated together on the same location. In 
Chapter 6, we define how logical and physical containers are derived by services from other containers, 
formalizing the principles of derivation chains as described in D 3.1. 

 

 

Figure 10 illustrates an instantiation of the semantic container metamodel for versioning from the 
physical viewpoint. A versioned elementary physical container initially consists of a regular physical 
dataset. The first version is regular and consists only of the initial set. The second version consists of 
the initial dataset and the first delta set. The first delta set (S2) and the corresponding second version 
are regular. Then, for some reason, a degenerated physical dataset (S3) is added, making the third 
version, which consists of the first, second, and third datasets, a degenerated physical version. The 
delta set S4, on the other hand, is regular again. The fourth version consists of S1, S2, and S4, but not 

 

Figure 8. Class diagram “Versioning” in the logical view: Container versioning 

class Versioning

LogicalContainer

VersionedLogicalContainer LogicalVersionUnversionedLogicalContainer
+/version

1..*1
+/currentVersion

1
{subsets
version}

1

 

Figure 9. Class diagram “Versioning” in the physical view: Versions and physical datasets 
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the generated dataset S3. Creation times of datasets, which are not shown in the example, allow for a 
reconstruction of the state of a physical container at any point in time, allowing for auditability in case 
of incidents. 

 

5.2 Push and pull synchronization 
The decision for a particular synchronization approach is orthogonal to the presented semantic 
container approach: The semantic container approach supports both push- and pull-based 
synchronization. A pull-based synchronization approach works without the source container – and 
management system thereof – knowing about the existence of the derived container that is to be kept 
in synchronization. A push-based synchronization approach lets semantic containers subscribe for 
updates at the source container. The source container has a list of subscribers for updates and the 
management system of the source container automatically pushes updates to the derived containers. 

We accommodate for push-based synchronization in the metamodel by having a pushUpdatesTo 
relationship from logical container to location (see Figure 4). The location is a subscriber to updates, 
the container management system at a subscribing location will automatically receive updates from 
the primary location of the logical container. 

Pull-based synchronization requires administrative metadata at the logical and physical level. Each 
physical container requires administrative metadata that records when the last synchronization and 
the last check for updates from the primary copy (and possibly secondary copy). Using the metadata, 
the container management system that manages the physical container can periodically check for 
updates, depending on the system’s settings. 

 

Figure 10. Object diagram “Versioning”: Example versions and physical datasets 

object Versioning

NOTAMs<Route: ZRH-FRA>#1: 
VersionedElementaryPhysicalContainer

S1: RegularPhysicalDataset

S2: RegularPhysicalDataset

S4: RegularPhysicalDataset

S3: DegeneratedPhysicalDataset

V1: RegularPhysicalVersion
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V3: DegeneratedPhysicalVersion
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+deltaSet +version

+version

+version
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+deltaSet
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6 Provenance and composition 
The lineage of a semantic container in a derivation chain should be represented in the container 
management system. A logical container may have multiple primary sources as well as alternative 
secondary sources (Figure 11). The primary sources are the sources of prime quality. Secondary 
sources usually offer degraded quality. 

6.1 Lineage of logical containers 
A logical container derives from a primary or secondary source through a service call (Figure 11). 
Typically, a logical container has a single primary source, which is the source with the highest quality 
and freshness. In rare circumstance, a semantic container may have multiple alternative primary 
sources. Secondary sources of lesser quality are only used when no primary source is available at the 
expected freshness. Primary or secondary sources are again semantic containers. A service call has a 
semantic label as arguments and possibly many static containers as additional input. For example, 
static containers supplied to a digital briefing service as additional input may include a list of relevant 
aerodromes for a particular flight route. These containers are static in a sense that their input does not 
change or is only very slowly changing. The semantic label that serves as the arguments reflect the 
semantic label of the result container. Although omitted in the figure, the semantic label also provides 
a value for each associated facet. 

 
A service call can have multiple occurrences. The call occurrences, on a physical level, are then what 
actually produce a dataset (see Figure 13). Each service call belongs to a service, which has in turn a 
service provider. 

Figure 12 illustrates an example lineage of semantic container according to the metamodel. The 
NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> container has two (alternative) primary sources. The 
container may either be derived through one service call from the NOTAMs<Region: Europe> 

 
Figure 11. Class diagram “Service” in the logical view: Lineage of semantic containers 

class Service
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container, which contains all NOTAMs relevant to Europe, or through another service call from the 
NOTAMs<Route: ZRH-FRA> container, which contains all NOTAMs relevant for the route from Zurich 
to Frankfurt. Both calls that serve to derive the NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> 
container from its sources are calls of the NOTAMFilterService. The NOTAMFilterService – we do not 
specify a provider in this example – has Date and Route facets as parameters, although not all service 
calls must supply arguments for all parameters. The Filter NOTAMs for 05/04/2017 service call, for 
example, which derives the NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> container from the 
NOTAMs<Route: ZRH-FRA> container, receives as arguments a semantic label with only the 
05/04/2017 concept for facet value. The Filter NOTAMs for ZRH-FRA and 05/04/2017 service call, on 
the other hand, which derives the NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> container from the 
NOTAMs<Region: Europe> container, receives as arguments a semantic label with both the date and 
the ZRH-FRA concept for facet values. 

6.2 Provenance of physical datasets 
Services, just like containers, have logical and physical aspects that must be considered. Each logical 
service has a provider and may be realized as multiple physical services running at different locations. 
The location that produces a dataset may be different from the location where the source or result 

 
Figure 12. Object diagram “LogicalService”: Example lineage of logical containers 

object LogicalService

NOTAMs<Route: ZRH-FRA>: 
EntityElementaryLogicalContainer

NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>: 
EntityElementaryLogicalContainer

NOTAMFilterService: 
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EntityElementaryLogicalContainer

Filter NOTAMs for ZRH-FRA and 05/04/2017: 
ElementaryLogicalServiceCall
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:SemanticLabelToFacet ZRH-FRA: Concept

Route: 
SpatialFacet

definedBy
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dataset resides. The references to physical service calls and call occurrences allows to trace the 
creation of a dataset back to a specific service provider and physical server where the service was 
actually executed. Besides tracking provenance, the linking back to the creating service also allows 
assumptions about the data quality, since potential data quality attributes of the information service 
from the SWIM registry (when in place) can be used also to describe the quality of the semantic 
containers produced by the services. 

The provenance concept of the semantic container approach was inspired by the PROV-O 
ontology [13].The PROV-O ontology considers activities that are associated with an agent and use 
entities that were themselves generated by activities and derived from other entities. The semantic 
container approach builds on that provenance concept by considering services (activities) that are 
associated with a service provider (agent) and use containers (entities) that were themselves 
generated by services (activities) and derived from other containers (entities). In contrast to the PROV-
O ontology, however, we distinguish between primary and secondary sources. 

 

Figure 13 shows the metamodel for the definition of provenance of physical datasets. The classes 
LogicalService, LogicalServiceCall, and LogicalServiceCallOccurrence have physical counterparts. 
Hence, PhysicalService and PhysicalServiceCall represent the realizations of LogicalService and 
LogicalServiceCall, respectively. A physical service is allocated at a location, the server that hosts the 
service. A physical service call may have multiple physical service call occurrences 
(PhysicalServiceCallOccurrence). A physical service call occurrence has an occurrence time. 

A physical dataset has a creation time and a creating call occurrence. Each physical call occurrence 
produces a single physical dataset. 

A physical container may have multiple sources. The PhysicalSourceDerivation class represents the 
relationship between a source physical container and the result physical container. The derivation of 
a physical container from another physical container is done by a physical service call. Note that there 
can be multiple derivation links between the same physical source and result containers. A physical 

 

Figure 13. Class diagram “Service” in the physical view: Provenance of physical datasets 
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container C1 can have one of its datasets derived from a physical container C2 by a physical service call 
of a physical service S1. The container C1 can have another one of its datasets derived from that same 
physical container C2 by a physical service call of a physical service S2. Both S1 and S2 could be 
realizations at different locations of the same logical service. 

Figure 14 illustrates an instantiation of the metamodel for physical dataset provenance. The logical 
container NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> has the primary copy NOTAMs<Route: ZRH-
FRA, Date: 05/04/2017>#1. The logical container derives from the primary source container 
NOTAMs<Region: Europe>, which has a primary copy NOTAMs<Region: Europe>#1 and a secondary 
copy NOTAMs<Region: Europe>#2. The NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>#1 physical 

 

Figure 14. Object diagram “PhysicalService”: Example provenance of physical datasets 

object PhysicalService
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container has an initial set and two delta sets (all regular). The NOTAMFilterService as physically 
realized by the NOTAMFilterService@GroupEAD was used to derive all three datasets. Two different 
calls, and three different call occurrences, however, were used to create the different datasets. The 
datasets DS1 and DS2 were created by occurrences of the same service call. The service call was used 
to create the datasets with the NOTAMs<Region: Europe>#2 as input. The dataset DS3 was created by 
a different service call, which uses the NOTAMs<Region: Europe>#1 as input. Hence, the 
NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>#1 container, in its current state with three datasets, 
derived from the NOTAMs<Region: Europe>#1 and NOTAMs<Region: Europe>#2 container. 

6.3 Container composition 
Elementary containers consist of data items of a particular data item type. We distinguish between 
annotation elementary containers and entity elementary containers. An entity elementary container 
consists of data items of a particular entity type, e.g. NOTAMs, METARs. An annotation elementary 
container consists of data items that are annotation of a particular annotation type annotating entities 
of a particular entity type, e.g., NOTAM importances annotating NOTAMs. Figure 15 shows the 
metamodel for elementary logical containers. Figure 16 shows the metamodel for elementary physical 
containers. 

 

Composite logical containers consist of other semantic containers (Figure 17). A composite container 
may either be homogeneous or heterogeneous. A homogeneous composite container consists of 
component containers (elementary or homogeneous composite) that all contain items of the same 
data item type. A heterogeneous composite container may consist of component containers with 
different types of data. Figure 18 illustrates an example instantiation of a heterogeneous composite 
logical container. The composite container has component containers that contain data items of types 
METAR, NOTAM, and NOTAMPriority. A homogeneous composite container with METARs for the 
EDGG and LSAS region, an entity elementary container with NOTAMs for the route from Zurich to 
Frankfurt, and an annotation elementary container with NOTAM priorities for a specific flight from 
Zurich to Frankfurt on a specific date make up the component containers of the composite container. 

 
Figure 15. Class diagram “Elementary” in the logical view: Types of elementary semantic containers 
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Figure 16. Class diagram “Elementary” in the physical view: Types of elementary semantic containers 
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Figure 17. Class diagram “Composite” in the logical view: Types of composite semantic containers 
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The physical model (Figure 19) of container composition mainly redefines the relationships of physical 
container. 

 
Figure 18. Object diagram “LogicalComposite”: Example composite semantic container 

object LogicalComposite

METARs<Region: EDGG>: 
EntityElementaryLogicalContainer

METARs<Region: LSAS>: 
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NOTAMs<Route: ZRH-FRA>: 
EntityElementaryLogicalContainer

NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>: 
AnnotationElementaryLogicalContainer

METARs<Region: EDGG> UNION METARs<Region: LSAS> UNION NOTAMs<Route: ZRH-FRA> 
UNION NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>: 

HeterogeneousCompositeLogicalContainer

componentsContainItemsOfType
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Figure 19. Class diagram “Composite” in the physical view: Types composite semantic containers 
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The provenance concept must likewise be adapted for composite containers: Composite logical 
containers are created by composite logical services. Figure 20 shows the metamodel for service 
composition, and it reflects the metamodel for container composition. A composite logical service 
consists of component logical services. A composite logical service has several composite logical 
service calls. The derivation of a composite logical container is a primary or secondary source 
composition – a specialization of primary and secondary source derivation, respectively. 

 

Figure 20. Class diagram “ServiceComposition” in the logical view: Composition of services 
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Figure 21 illustrates an example instantiation of the metamodel for logical service composition. A 
BriefingService instance of CompositeLogicalService may be called to get the briefing information for a 
specific flight. A heterogeneous composite logical container with METARs for regions EDGG and LSAS 
as well as NOTAMs for the route from Zurich to Frankfurt and NOTAM priorities for a specific flight 
may be derived by one such call to the briefing service. Each PrimarySourceComposition link makes 
reference to the same call. A call can only be used for one composite container: A call binds together 
all the primary source compositions that belong together. Another call binds together another, 
alternative primary or secondary derivations (compositions) of a composite semantic container. 

 

Figure 21. Object diagram “LogicalServiceComposition”: Composition of services 

object LogicalServiceComposition

NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>: 
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CompositeLogicalService

:PrimarySourceComposition

:PrimarySourceComposition

:PrimarySourceComposition

:PrimarySourceComposition

:PrimarySourceComposition

Get Briefing Information for Flight LX1068: CompositeLogicalServiceCall

+call +call +call +call+call

+call



D2.2  	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

33 
 

 

 

Founding Members

 

Figure 22 shows the metamodel for service composition at the physical level. Physical service 
composition basically redefines the relationships of physical services and physical service calls. 

 

Figure 22. Class diagram “ServiceComposition” in the physical view: Composition of services 
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7 Semantic container management system: 
possible architecture 

In this section we introduce a possible architecture for a semantic container management system. The 
semantic container approach as introduced in deliverable D 2.1 and the language (UML metamodel) 
introduced in this deliverable may be implemented in many different forms, it is independent of a 
concrete software and data distribution architecture. Other and maybe more adequate architectures 
may be developed in the future based on the vast literature on distributed systems (e.g., [15, 16]). The 
herein described proposed architecture serves two purposes, namely  

• to give a more complete picture of a globally distributed semantic container management 
system, and  

• to serve as a starting point for the development of more advanced software and data 
distribution architectures. 

A semantic container management system is distributed over multiple server locations and multiple 
client locations. Locations are connected over the Internet. Container content and metadata are 
allocated redundantly at multiple locations. Centrally-provided software is run independently at the 
different locations which cooperate to provide globally-distributed semantic container management. 

7.1 Data Distribution Architecture 
Container content and metadata are allocated redundantly at multiple locations. A semantic container 
consists of location-independent metadata (represented by the logical semantic container), location-
dependent metadata (represented by the physical semantic container) and content (also referred to 
as data or information, e.g., a set of AIXM Digital NOTAMs). 

Metadata is modelled by the UML metamodel presented in this deliverable which can be translated 
into an RDF vocabulary (see D 3.2).The container metadata are then represented as RDF triples. All 
container metadata can be collected into an RDF graph. This RDF graph of all semantic containers is 
fully replicated at every server location and partially replicated at client locations. Each location runs 
an RDF database management system (a.k.a. graph store) and SPARQL query engine for storing, 
modifying and querying (parts of) the RDF graph. Modifications of metadata at some location are 
replicated in an asynchronous manner to other locations to provide for redundancy of metadata in 
case of connection or network failures. Replica consistency of metadata is maintained by giving priority 
to most recent writes. 

Container contents remain in their original form (XML documents according to AIXM, IWXXM, or 
FIXM). Each location runs an XML database management system (a.k.a. document store) for storing 
and querying the contents of its allocated containers.  

7.2 Software Distribution Architecture 
Each server location independently runs a software package which makes available functionality for 
managing and querying data and metadata via RESTful web services. A client location (or sink), e.g., an 
electronic flight bag on board of an aircraft, may run a client variant of the software package which 
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provides a subset of this functionality. The software package (in its server and client variants) is 
distributed from a central software repository. 

A client location provides functionality for: 

• Allocating an existing semantic container 

• Provisioning of semantic containers including content and metadata 

• Keeping data and metadata of allocated semantic containers up-to-date via push and/or pull 
from their primary sources 

• Keeping semantic containers up-to-date from alternative sources in case of unavailability of 
primary sources 

A server location additionally provides functionality for: 

• Creating a semantic container, storing its primary copy, deriving locations for secondary copies 

• Calling services to derive/update the contents of semantic containers 

• Forwarding modifications of semantic containers to client containers via push and pull 

• Creating, updating and deleting semantic containers 

• Discovery of semantic containers 
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8 Conclusion 
A replication mechanism for the redundant storage of semantic containers promises higher availability 
of mission-critical data within SWIM while at the same time reducing the network load of SWIM. By 
packaging ATM information in semantic containers, SWIM information services may cache often used 
information and thus avoid frequent calls to other SWIM services. Applications may store local copies 
of important information to hedge against network outage when availability of the information is 
mission-critical, e.g., on an aircraft. Furthermore, semantic containers are a mechanism to retain 
provenance information when packaging ATM information from different SWIM information services. 
Thus, when a composite SWIM information service returns a composite semantic container based 
upon information from various other SWIM services, provenance information about the semantic 
container’s components is preserved, which is important for auditability purposes. 

A semantic container management system providing mission-critical data and metadata requires 
special consideration of trustful communication to ensure authentication, integrity, and 
nonrepudiation of data and metadata. In a decentralized system, trust can only be provided based on 
cryptographic protocols (see  [17]). This is clearly out of scope of the BEST project. Future research 
needs to investigate how BEST's semantic containers can be combined with cryptographic protocols 
(e.g., using blockchain technology) to provide trustful semantic container management and secure 
SWIM. 

As a concluding remark, we note that the BEST semantic container approach is not meant to rival 
SWIM, but to provide a data-centric layer for SWIM information services, which the SWIM services and 
applications may use for the management of ATM information. 
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10 APPENDIX A: ATM information cubes 
In this appendix, we propose the use of semantic containers as the fundamental for data distribution 
in ATM information cubes. The content of this appendix is an adaption of a paper submitted to the 
ICAS Congress 2018 for review3, which we will further extend following an invitation by the ICAS 
Congress 2018 organizers to submit to the Aeronautical Journal4 for a special issue. The research 
results described in this appendix may serve as the starting point for future research that continues 
the effort of the BEST project, building on the semantic container concept. 

The original motivation behind ATM information cubes is as follows, but could be extended to other 
types of ATM information as well: Pilot briefings, in their traditional form, drown pilots in seas of 
information. Rather than unfocused swathes of ATM information, pilots require the information that 
they need for their flight at hand. To this end, we introduce the notion of ATM information cubes – in 
analogy to data cubes in data warehousing and OLAP. We introduce a conceptual framework for the 
summarization of semantic containers using merge and abstraction operations, yielding a higher-level 
management summary of relevant information. 

10.1 Overview 
A Pre-flight Information Bulletin (PIB) provides pilots with current Notices to Airmen relevant for a 
particular flight [18]. A Notice to Airmen (NOTAM) notifies aviation personnel about temporary 
changes regarding flight conditions [19], e.g., closure of air space or unserviceable navigation aids. PIBs 
are traditionally delivered on paper in textual form, with limited possibilities for structuring the data, 
drowning pilots in information. Digital NOTAMs (DNOTAMs), on the other hand, facilitate classification 
of data items along different dimensions, e.g., importance, geographic area, flight phase, and event 
scenario, that can be employed to flexibly structure the PIB in order to reduce information overload 
[20]. For example, using the classification rules developed in the Semantic NOTAM (SemNOTAM) 
project (see [20]), DNOTAMs can be packaged into semantic containers (see [21]), each container 
comprising the DNOTAMs about the same event scenario that have the same importance for a certain 
flight on a particular date in a given flight phase at some geographic location. Consider, for example, 
the semantic containers on the left-hand side of Figure 23 which, given a flight and date assumed to 
be fixed, contain the DNOTAMs for flight information region (FIR) segment EDDU-01 classified as an 
operational restriction for the cruise flight phase and the DNOTAMs for FIR segment EDDU-02 classified 
as flight critical for the descent flight phase, respectively. 

Semantic containers may also contain other types of data items relevant for pilot briefings, classified 
along different dimensions [22], which allows for the representation of an enhanced PIB (ePIB [23]) 
that also includes information beyond DNOTAMs, e.g., meteorological (MET) information such as 
METAR and TAF messages in digital form. Rule-based approaches similar to SemNOTAM could also be 
devised for messages other than DNOTAMs (cf. [24]). Indeed, an electronic flight bag (EFB) platform 
                                                             

 

3 See http://www.icas.org/ for further information. 
4 https://www.cambridge.org/core/journals/aeronautical-journal 
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may display various kinds of relevant ATM information for a flight, depending on the 
manufacturer [25]. The question is how to organize relevant information in order to enable 
applications to make smart use of it. 

In the following, we propose a conceptual framework for further summarization of semantic 
containers using merge and abstraction operations, yielding a higher-level management summary of 
relevant information. To that end, we adapt the concept of OLAP cubes – i.e., multidimensional data 
structures for online analytical processing (OLAP) – and OLAP query operators (see [26] for further 
information) to work with information in air traffic management (ATM). We hence propose the notion 
of ATM information cube, which hierarchically organizes semantic containers. We assume the 
existence of appropriate rule-based filtering mechanisms to collect ATM information into the 
containers. The SemNOTAM classification rules [20], for example, provide a first reduction of the 
information overload in pilot briefings by packaging DNOTAMs into collections of smaller containers, 
analogous to OLAP cubes. These containers can be merged in order to obtain more comprehensive 
containers of data items. For example, individual containers with flight critical DNOTAMs and 
DNOTAMs about operational restrictions, respectively, are merged into a container with DNOTAMs 
that comprise the essential briefing package (see Figure 23); containers with DNOTAMs about different 
en-route segments are merged into containers about entire flight information regions (FIRs); 
containers with DNOTAMs relevant to the cruise flight phase or descent flight phase, respectively, are 
merged into a container relevant for en-route phases in general. The data items can then be further 
combined to obtain more abstract data items. For example, individual DNOTAMs concerning specific 
runway closures for landing aircraft are combined into one abstract DNOTAM indicating the existence 
of a runway closure for landing aircraft in a specific context, with only more general (or abstract) 
information about obstructions, hazards, construction activity, etc. given. 

 

 
Figure 23. Illustration of merge and abstract operations for semantic containers: The semantic containers on the left are 
merged into a single container, the contents of which are altered through application of some abstraction operation. 

Operational 
Restriction

ED
U

U
-0

1

Flight Critical

ED
U

U
-0

2

Essential
Briefing Package

ED
U

U

Merge



D2.2  	

	

		

	
 

 

 

© 2018– BEST Consortium  
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions. 

41 
 

 

 

Founding Members

10.2 Background 
In this section, we present relevant background information on semantic containers as well as rule-
based filtering and annotation of ATM information. We further discuss related work. 

10.2.1 Rule-based filtering and annotation of ATM information 
The metadata-centric semantic container approach needs to be complemented by information 
processing and reasoning techniques at the instance level – in order to derive the actual content of 
semantic containers – as provided by the SemNOTAM approach [20]. The SemNOTAM approach comes 
with a mix of techniques necessary to cope with the complexity of ATM domain knowledge and of the 
filtering and annotation task [27]. 

In the SemNOTAM approach, the SemNOTAM engine receives ATM information, i.e., a set of 
DNOTAMs, and the user's interest specification as input, translates the input into a representation that 
suits knowledge-based reasoning, selects from its knowledge base the relevant set of filtering and 
annotation rules and lets the knowledge-base reasoner execute these rules against the ATM 
information. The result of the reasoning process – a filtered and enriched set of DNOTAMs – is provided 
to the user, who typically is a pilot or air traffic controller.  

Combining SemNOTAM with BEST's semantic container approach, the input and output of the 
SemNOTAM engine are the contents of semantic containers. Different instances of SemNOTAM, with 
different configurations and rules, may then act as information services in derivation chains of 
semantic containers. 

10.2.2 Related work 
Traditional OLAP systems work on multidimensional models with numeric measures (see [26]). Going 
beyond numeric measures, InfoNetOLAP [28], which is also known as graph OLAP, associates weighted 
graphs with dimension attributes. Topological and informational roll-up are the basic kinds of 
operations, akin to merge and abstraction operations presented in this paper. The focus of graph OLAP, 
however, are weighted directed graphs with highly structured and homogeneous data not suited for 
ATM information with its rich schema. 

ATM information cubes build on the ideas developed in our previous work [29], where we propose the 
use of business model ontologies for the management and summarization of rich information in OLAP 
cubes. In that approach, the cells of an OLAP cube are associated with entire RDF graphs, each 
representing knowledge that applies to a particular context. 

10.3 Data container management using ATM information cubes 
A semantic container is a flexible data structure for storing ATM data items and central to our notion 
of ATM information cube. For the purposes of this paper, we formally define the notion of semantic 
container as follows. 

We now arrange semantic containers in ATM information cubes along multiple dimensions (or facets) 
of content description. For that arrangement of semantic containers, we borrow the data cube 
metaphor from data warehousing and OLAP (see [26]): The dimensions span a multidimensional space 
where each point associates numeric values – the measures. In the case of ATM information cubes, 
however, the associated values are sets of ATM messages, e.g., DNOTAMs or METARs, rather than 
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numeric values. Each semantic container hence becomes associated with a point in a multidimensional 
space according to the container's semantic label. 

Consider, for example, the three-dimensional ATM information cube in Figure 25. Individual DNOTAMs 
are collected into semantic containers along geographic, importance, and scenario dimensions. Each 
semantic container in that cube hence contains DNOTAMs describing a specific scenario (see [30]) for 
a specific geographic segment within a FIR with some importance, e.g., operational restriction or flight 
critical, for the flight and date which the cube has been defined for. The coordinates of a container 
correspond to a semantic description of the data items inside the container. For example, the point 
identified by TS-LOWW-01, Flight Critical, and Runway Closure indicates that the associated semantic 
container comprises all DNOTAMs about runway closures that are flight critical for the TS-LOWW-01 
transition segment. Now the attentive reader will remark two things. First, nowhere in the model has 
the data item type been fixed to “DNOTAM”. Second, the importance of a DNOTAM depends on many 
things, first and foremost on the particular flight. Yet, the specific flight is not a dimension of the cube, 
nor is the date or the flight phase, which also influence importance. Both of these objections could be 
countered by the introduction of additional dimensions: for the item type, the flight, the date, and the 
flight phase. The cube associates containers only with points of a certain item type, flight, or date. On 
the other hand, item type, flight, and date could be implicit constants that set a context for the cube. 
In that case, we would build a separate cube of DNOTAMs for each flight and date. The pilot could 
dynamically select containers of DNOTAMs along the dimensions within that context only. 
Furthermore, a cube of ATM information cubes could organize multiple individual cubes and explicitly 
represent the otherwise tacit context information (explained later). 

 
In order to allow for roll-up operations, i.e., viewing the contents at different levels of granularity, an 
OLAP cube employs hierarchically organized dimensions. In the case of ATM information cubes, the 
roll-up operation corresponds to a merge (see Section 10.4). 

 
Figure 24. An example ATM information cube with geographic, importance, and scenario dimensions 
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Consider, for example, the dimension hierarchies in Figure 25, which illustrates hierarchies for the 
dimensions of the ATM information cube from Figure 24, namely importance, geographic, and scenario 
dimensions. The importance dimension hierarchy follows the importance classification system for 
DNOTAMs from SemNOTAM [20]. The scenario dimension hierarchy follows the organization of the 
FAA's document on airport operations scenarios [30]. The geographic dimension hierarchy consists 
only of segments on transitions to airports, which are assigned to a FIR. We note that alternative roll-
up relationships could be defined to allow for different geographic organization. 

 
A common issue for business intelligence applications are null values – i.e., missing, unknown, or 
invalid values – for dimension attributes (see  [31, pp. 207-208]), which applications must handle 
appropriately. Otherwise, null values may result in “misleading or inaccurate results” [31, p. 208]. 
Similarly, when collecting ATM messages into semantic containers, e.g., along an importance 
dimension, in some cases, the messages may not be assigned to any one particular member, e.g., 
importance class (see [20]). On the one hand, there could be custom null values in the dimensions, 
e.g., an unknown importance. On the other hand, ATM messages could be directly added to a point of 
a higher granularity, e.g., a DNOTAM is known to be in the essential briefing package although it is not 
known whether the DNOTAM is flight critical or denotes merely an operational restriction. To that end, 
in the following, we introduce the notion of multigranular ATM information cubes. 

We have defined an ATM information cube quite generally as associating semantic containers with 
points in a multidimensional space. Whereas the example cube in Figure 24 shows an ATM information 
cube that associates semantic containers only with the base granularity, i.e., the most specific 
granularity level, we may well imagine the existence of a multigranular ATM information cube that also 
associates semantic containers with coarser levels of granularity. Consider, for example, the ATM 
information cube in Figure 26, which illustrates a cube that associates data items explicitly with, e.g., 
the supplementary briefing package importance classification rather than the more specific potential 

 
Figure 25. Example dimension hierarchies of an ATM data cube: levels (in boldface) and level members 
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hazard or additional information importance classifications that roll up to the supplementary briefing 
package. 

The points of an ATM information cube at non-base granularities are referred to as higher-level 
containers. For example, in Figure 26, the point identified by LZBB, Supplementary Briefing Package, 
and Runway has a higher-level container that contains data items associated with the coarser FIR, 
package, and keyword granularity. 

 
If some message is flight critical for a segment of the LOVV region then, all other things remaining 
unchanged, that message is also in the essential briefing package for the entire LOVV region. 

We imagine ATM information cubes being built for a certain operational context, e.g., a specific flight 
on some date. In the previous sections, a cube's operational context was nowhere explicitly defined in 
the model. Thus, in order to externalize that context, we propose to arrange the ATM information 
cubes themselves into multidimensional structures (see Figure 27). 

A cube of ATM information cubes (or metacube) hence consists of several cubes, the sets of dimensions 
of which will typically overlap but not necessarily be equal. A drill-accross operator allows to combine 
the different cubes, joining via the common dimensions, with all non-common dimensions considered 
rolled up at the implicit all level. While the dimensions can be manifold, we assume flight, item type, 
and date/time as the typical candidates for dimensions. A point in such a metacube may contain, e.g., 
a cube of DNOTAMs relevant for flight OS93 on 15 March 2018. 

A pivoting operator allows to obtain a self-contained ATM information cube from a metacube by 
adding the metacube dimensions to the component cube. For these added dimensions, the dimension 
member is fixed to the respective points from the metacube. For example, the DNOTAM cube for OS93 
on 15 March 2018 associates containers only with points that have a value DNOTAM in the item type 
dimension, OS93 in the flight dimension, and 15 March 2018 in the date dimension. 

 
Figure 26. A multigranular ATM information cube 
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10.4 Merge of semantic containers 
The organization of semantic containers into ATM information cubes allows for a wide array of 
possibilities with respect to container merging. We distinguish a merge-select, a merge-union, and a 
merge-intersection operator. We note, however, that other forms of merge operators may also be 
conceived in the future. 

Intuitively, the merge-select operator applied on a cube q with a set of argument coordinates returns 
a single flat container of data items from the containers at the argument coordinates of the input cube 
q. The merge-select operator, however, is not closed with respect to ATM information cubes since the 
operator takes a cube as input and returns a container as output. 

The merge-union and merge-intersection operators are closed with respect to ATM information cubes, 
i.e., take a cube as input and return a cube as output. Both operators receive a granularity level g as 
input and return a new cube q' that has the granularity level g as the base granularity. The containers 
at the base granularity g of the new cube q' are all flat, i.e., elementary and non-composite, and contain 
data items from the containers of the input cube q below the new base granularity g. In the case of 
merge-union, the operator just selects all the data items. In the case of merge-intersection, the 
operator only selects the data items contained in each of the merged containers. We suppose the 
merge-union operator is the more common for ATM information cubes. 

Figure 28 illustrates the merge-union operator. The depicted cube has a coarser base granularity than 
the input cube as seen in Figure 24. The associated containers are elementary. In case the merge 
operator was applied on a cube with containers of different item types and the elementary containers 
must consist of a single item type, the application of the merge operator must be restricted to 
containers of the same item type (elementary or homogeneous composite). 

 
Figure 27. A multigranular ATM information cube 
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In OLAP cubes from traditional data warehousing, the “double-counting problem” [26] leads to 
summarizability issues [32]. In that case, counting the same numeric measure twice yields erroneous 
results. In the case of ATM information cubes, the double-counting problem does not pose an issue. 
We may well imagine the same DNOTAM being included in multiple containers. The merge-union 
operation would then simply ignore the duplicate data items when compiling the merged semantic 
container. 

 

10.5 Abstraction of data items 
The notion of abstraction serves as an umbrella term for a wide variety of different operations. 
Abstraction, as opposed to merge, is a kind of operations that alter the individual data items and their 
relationships to each other. Originally proposed for RDF data (see [29]), the principle of abstraction is 
independent from any concrete data or information model. 

We employ UML object diagrams to illustrate the principle of the abstraction operation. First, consider 
an object diagram that illustrates DNOTAMs according to the AIXM information model (Figure 29). 
Note, however, that for simplicity's sake, we adapt AIXM and disregard the AIXM temporality concept 
(see [33]). The object diagram then shows two DNOTAMs about the surface conditions of runways, 
and two DNOTAMs about the closure of runway directions. The LOWW-16/34 runway has two layers 
of contaminants with an overall extend of 0.32 m: dry snow (0.29 m) and ice (0.02 m). The LOWW-
11/29 runway has a layer of ice with an extent of 0.01 m. Both runways, however, have a specified 
length and width already cleared of contaminants while the remainder of the runway has winter 

 
Figure 28. A merge of the semantic data containers from Figure 24 along the geographic, importance, and scenario 
dimension hierarchies from Figure 25 
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services going on, thus leading two the closure of one runway direction from each runway. The closures 
are due to snow and ice removal, respectively, and for each runway affect only one runway direction 
whereas the other remains open. 

Assume the DNOTAMs in Figure 29 concern the destination airport of a particular flight. Then, a 
management summary suitable for the preparation and early phases of that flight might only show a 
single, abstracted DNOTAM that alerts the pilot that winterly conditions await at the destination 
airport. Consider, thus, the abstracted DNOTAM information inFigure 30, which is the result of 
applying some abstraction operator that we do not further specify; we leave the specification of useful 
abstraction operators for the ATM domain to future work. The resulting DNOTAM notes only winterly 
contaminant for a generic LOWW-Runway, and alerts of runway closure due to winter services. 
Summary data are given of the attributes such as the cleared length and width of the contaminated 
runways. While the abstracted DNOTAM has only one generic runway contamination, the count 
attribute provides documentation of the number of runway contaminations in the original model. 

 

 
Figure 29. An object diagram of DNOTAMs, simplified and adapted from the AIXM information model [1], disregarding the 
temporality concept, with DNOTAM messages classified according to the FAA aiprort operations scenarios [2] 
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Figure 30. An example of abstracted DNOTAM information obtained from the DNOTAM information in Figure 29 
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