
	

Ontology-based
techniques for data
distribution and
consistency management
in a SWIM environment

 Deliverable 2.2
 BEST
 Grant: 699298
 Call: H2020-SESAR-2015-1

Topic: Sesar-03-2015
Information Management in ATM

 Consortium coordinator: SINTEF
 Dissemination Level: PU
 Edition date: 17 May 2018
 Edition: 01.00.01

EXPLORATORY RESEARCH

EDITION [01.00.01]

2

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Authoring & Approval

Authors of the document
Name/Beneficiary Position/Title Date

Christoph Schuetz (LINZ) Project member 17.05.2018

Bernd Neumayr (LINZ) Project member 17.05.2018

Michael Schrefl (LINZ) Project member 17.05.2018

Eduard Gringinger (FREQUENTIS) Project member 01.02.2018

Reviewers internal to the project
Name/Beneficiary Position/Title Date

Joe Gorman (SINTEF) Project leader 27.04.2018

Audun Vennesland (SINTEF) Project member 12.05.2018

Approved for submission to the SJU By — Representatives of beneficiaries involved in the project
Name/Beneficiary Position/Title Date

Approved by consortium in
accordance with procedures
defined in Project Handbook.

All partners 18.05.2018

Rejected By - Representatives of beneficiaries involved in the project
Name/Beneficiary Position/Title Date

Document History

Edition Date Status Author Justification

00.00.01 18.01.2017 Planned Content and
Structure (PCOS)

Christoph Schuetz Completed PCOS for
internal review

00.01.00 06.06.2017 Intermediate Christoph Schuetz Progress report for
internal review

00.02.00 13.03.2018 Intermediate Christoph Schuetz Progress report for
internal review

00.03.00 17.04.2018 External proposed Christoph Schuetz Proposed final text for
internal review

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

3

Founding Members

00.04.00 30.04.2018 External proposed Bernd Neumayr Incorporate Joe’s
Comments

Edition Date Status Author Justification

01.00.00 09.05.2018 External proposed Christoph Schuetz Finalize the document for
another round of internal
review

01.00.01 17.05.2018 External Christoph Schuetz Finalize the document
after last round of
internal review

EDITION [01.00.01]

4

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

BEST
Achieving the BEnefits of SWIM by making smart use of Semantic
Technologies
This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 699298 under the European Union’s Horizon 2020 research and innovation
programme.

Abstract/Executive Summary
Effective use of the Semantic Container approach developed in BEST depends on the existence of a
Semantic Container Management system controlling the replication, distribution and consistency of
containers. The deliverable provides a metamodel describing the information needed to implement
such a Semantic Container Management System.

In the field of distributed databases, there are many existing techniques for distribution, replication
and consistency management, mostly based on a single generic data model. In BEST we refine this,
using different types of models for different kinds of information.

High availability of information and low network load are key goals for the success of the SWIM
approach. Semantic containers, supported by a Semantic Container Management System, can
contribute significantly to these goals.

The metamodel distinguishes between logical and physical containers, and indicates which containers
are allocated to which nodes. It also allows definition of versions of containers, supporting consistency
management and different forms of synchronization. Finally, the metamodel allows for traceability of
data provenance, and definition of composite containers that gather data from lower-level elementary
containers.

We illustrate the proposed metamodel using NOTAMs as example. We stress, however, that the
semantic container approach applies to other types of ATM information as well.

The deliverable also outlines the architecture of a Semantic Container Management system, describing
the distribution of the metadata and software components needed to implement it.

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

5

Founding Members

Table	of	Contents	
	

Abstract/Executive Summary .. 4

1 Introduction: About this document ... 7

1.1 Purpose .. 7

1.2 Intended readership... 7

1.3 Relationship to other deliverables ... 8

1.4 Relationship to Publications... 8

1.5 Acronyms and abbreviations.. 8

2 Background ... 10

2.1 Distribution and replication ... 10

2.2 Consistency management .. 10

2.3 Provenance .. 11

3 Semantic container distribution and SWIM .. 12

3.1 High availability of information.. 12

3.2 Decreased network load and computation effort .. 13

4 Distribution and replication .. 14

4.1 Logical containers .. 14

4.2 Physical containers and their allocation ... 16

4.3 Determining allocation sites .. 19

5 Consistency management ... 20

5.1 Versioning of semantic containers ... 20

5.2 Push and pull synchronization ... 22

6 Provenance and composition .. 23

6.1 Lineage of logical containers .. 23

6.2 Provenance of physical datasets .. 24

6.3 Container composition ... 27

7 Semantic container management system: possible architecture 34

7.1 Data Distribution Architecture ... 34

7.2 Software Distribution Architecture .. 34

EDITION [01.00.01]

6

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

8 Conclusion ... 36

9 References .. 37

10 APPENDIX A: ATM information cubes ... 39

10.1 Overview .. 39

10.2 Background .. 41
10.2.1 Rule-based filtering and annotation of ATM information .. 41
10.2.2 Related work .. 41

10.3 Data container management using ATM information cubes .. 41

10.4 Merge of semantic containers .. 45

10.5 Abstraction of data items ... 46

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

7

Founding Members

1 Introduction: About this document1
1.1 Purpose
The Grant Agreement describes the content of this deliverable as follows:

“This deliverable comprises an ontology-based language for describing data distribution, including data
lineage and freshness requirements.”

In this context, the term “language” means a way of describing, in a formalised way, all the information
that is needed to make effective use of semantic containers in information systems (such as SWIM)
where data can be replicated and distributed to multiple locations.

Effective use of semantic containers depends on the existence of a Semantic Container Management
System: software that manages the job of caching of containers, deciding where replicas should be
stored, and maintaining consistency between them. Deliverable 3.2 provides a prototype of such a
system; it is the purpose of this deliverable to provide the language needed to implement the semantic
container management system.

The “language” provided by the deliverable is a metamodel for semantic container management,
expressed as a collection of UML diagrams. The UML diagrams constitute an ontology complementary
to the various existing ATM domain ontologies (see D 1.1), and translate into an RDF vocabulary that
can be used in the implementation of a prototype semantic container management system (see D 3.2).
The metamodel covers aspects of semantic container distribution and replication, consistency
management, and provenance (semantic container lineage). A semantic container’s quality metadata
indicate actual freshness and expected freshness of the contained ATM information.

The deliverable goes beyond its original scope by also introducing (in Appendix A, see Section 10) initial
ideas on the concept of ATM information cubes. This concept provides a form of semantic container
distribution that may serve as the basis for future research.

1.2 Intended readership
This document is primarily targeted towards people having an interest in

• ATM information exchange
• Application of semantic technologies in ATM
• System Wide Information Management (SWIM)

1 The opinions expressed herein reflect the author’s view only. Under no circumstances shall the SESAR Joint Undertaking be
responsible for any use that may be made of the information contained herein.

EDITION [01.00.01]

8

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

1.3 Relationship to other deliverables
Deliverable Relationship

D 1.1 Experimental ontology modules formalising
concept definition of ATM data

The ontology modules developed in D 1.1 can serve
as the fundamental for the faceted ontology-based
description of semantic containers. The semantic
container metamodel described in this deliverable
represents an ontology complementary to existing
ATM domain ontologies.

D 2.1 Techniques for ontology-based data
description and discovery in a decentralized
SWIM knowledge base

The concept of semantic containers and the
fundamentals for definition and discovery are defined
in D 2.1, which are re-used in this deliverable.

D 3.1 Prototype Use Case Scenarios The scenarios described in D 3.1 provide the scope for
the semantic container approach.

D 3.2 Prototype SWIM-enabled applications The prototype semantic container management
system in D 3.2 builds on the concepts described in
this deliverable.

D 4.4 Tutorial for Software Developers The tutorial will describe how software developers
can write SWIM applications using semantic
containers for data management and discovery.

D 5.1 Scalability Guidelines for Semantic SWIM-
based Applications

D 5.1 formally investigates scalability aspects of the
semantic container approach.

D 5.2 Ontology Modularisation Guidelines for SWIM The guidelines will describe how to develop ontology
modules for the semantic container approach.

1.4 Relationship to Publications
A work-in-progress version of the research presented in the main body of this deliverable was
published as a paper [1] in the Proceedings of the Integrated Communications Navigation and
Surveillance Conference 2018. Furthermore, the material in the appendix will be presented at the 2018
Congress of the International Council of the Aeronautical Sciences; a paper is currently under review
for a recommendation letter. An extended version of that paper will be submitted for a special issue
of the Aeronautical Journal, following an invitation of the program committee based upon the original
submission of the extended abstract. Some parts of the text of this document are copied directly from
parts of these papers.

1.5 Acronyms and abbreviations
Acronym/Abbreviation Explanation

ANSP Air Navigation Service Provider

AIRM ATM Information Reference Model

AIXM Aeronautical Information Exchange Model

ATM Air Traffic Management

DNOTAM Digital NOTAM

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

9

Founding Members

Acronym/Abbreviation Explanation

EFB Electronic Flight Bag

F-Logic Frame Logic

FIXM Flight Information Exchange Model

IWXXM ICAO Meteorological Information Exchange Model

METAR Meteorological Aerodrome Report

NOTAM Notice To Airmen

OLAP Online Analytical Processing

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

SESAR Single European Sky ATM Research

SPARQL SPARQL Protocol and RDF Query Language

TAF Terminal Aerodrome Forecast

UML Unified Modelling Language

W3C World Wide Web Consortium

WSDOM Web Service Description Ontological Model

XML Extensible Markup Language

EDITION [01.00.01]

10

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

2 Background
In this chapter, we briefly present background information on data distribution and replication,
consistency management in distributed databases, and data provenance. We briefly explain the role
of semantic container distribution for SWIM in a separate chapter (Chapter 3).

2.1 Distribution and replication
The algebra of qualified relations [2] is a well-established approach to distributed database
management, which serves as a main inspiration for container versioning and consistency
management in a distributed environment. We adapt the concept for SWIM information services and
extend the concept with semantic labels to support the management of containers, specifically the
discovery but also the description of container lineage and provenance.

Related work investigates the integration of information related to flights in a data lake [3]. In a sense,
the semantic container approach can be considered an ontology-based, structured data lake approach.
Other work [4] investigates the design and execution of web service workflow, metadata management
has been identified an important topic [5]. Derivation chains of semantic containers provide a data-
centric view on information service workflows.

Zand and Schandl [6] propose to use “Semantic Web technologies to build comprehensive descriptions
of user’s information needs based on contextual information, and employs these descriptions to
selectively replicate data from external sources.” This approach is about keeping on mobile devices
local copies of relevant data, so that an application on the mobile device can operate also without
network connectivity.

Replication of semantic containers is related to distribution and replication of (dynamic) XML
documents [7, 8]. In comparison to existing approaches, BEST semantic containers offer a unique
combination of version management, distribution and replication, and fine-grained provenance
tracking. Instead of relying on a single generic data model (like XML), the semantic container approach
uses different data/knowledge models for different kinds of information (XML for data, RDF for
metadata, OWL for semantic labels) to get the best of all worlds. In contrast to generic XML-based
approaches, the Semantic Container approach leverages the specifics of ATM information exchange,
with data items like NOTAMs and METARs constituting the lowest grain of fragmentation.

Metwally et al. [9] model datacenter resources for infrastructure-as-a-service (IaaS) using an ontology
model and employs reasoning for the allocation of resources.

2.2 Consistency management
In database replication, eager and lazy approaches can be considered [10]. Distributed semantic
container management could follow both an eager and lazy replication approach, depending on the
criticality of the data – for non-safety critical data, lazy replication may be preferable due to the lower
replication costs. Lightweight approaches to versioning also for database systems have recently been
proposed, e.g., OrpheusDB [11]. When datasets are collaboratively authored, version management is
of importance and appropriate techniques for version management in the spirit of common version
control systems must be developed [12].

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

11

Founding Members

2.3 Provenance
The PROV-O ontology [13] considers activities that are associated with an agent and use entities that
were themselves generated by activities and derived from other entities. The semantic container
approach builds on that provenance concept by considering services (activities) that are associated
with a service provider (agent) and use containers (entities) that were themselves generated by
services (activities) and derived from other containers (entities).

EDITION [01.00.01]

12

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

3 Semantic container distribution and SWIM
With respect to data distribution as described in this deliverable, the benefits of the semantic container
approach for the SWIM concept are described in D 3.1 as follows:

• High availability of information: Semantic containers are packages of ATM information that
can be redundantly allocated on various server nodes for increased availability.

• Decreased network load: Redundant allocation of semantic containers also reduces network
load as SWIM information services may cache frequently used packages of ATM information
for reuse.

In the following, we briefly summarize these main advantages of the semantic container approach’s
distribution concept for SWIM according to D 3.1. We refer to D 3.1 for further information.

3.1 High availability of information
In SWIM, different applications require different types of ATM information at various degrees of
freshness and availability. An aircraft pilot may, for example, request current weather data. For
availability’s sake, consistency may be sacrificed: Slightly outdated weather information is better for a
pilot than none at all. With respect to notifications about runway closures, on the other hand, pilots
require fresh data because wrong information would entail potentially disastrous consequences.
Semantic containers allow to make the inherent trade-off between freshness and high availability
tangible for the consumer of ATM information: A semantic container packages ATM information, the
resulting packages can be redundantly stored at multiple locations for high availability, administrative
metadata indicate freshness and data quality.

Semantic containers also increase availability of the overall system by considering multiple sources of
ATM information which semantic containers may be derived from. The semantic container metamodel
as presented in this deliverable allows for the representation of multiple data sources for the same
semantic container. A semantic container management system (see Section 1.1 and Section 7) may
switch dynamically and transparently between different sources. Different sources may provide the
same data with different quality in order to ensure that the consumer is alert to any reduction in quality
of service. A primary source is a source with the highest data quality among the sources of the
container. Secondary sources of lesser quality are only used when no primary source is available at the
expected freshness.

A particular advantage of packaging ATM information in semantic containers is the possibility to
allocate relevant information directly in the aircraft that operates a specific flight. The semantic
container can be created a couple of days prior to the date the actual flight takes place, being filled
with relevant information in advance. Shortly before the flight, at the departure airport with high
bandwidth, the container can be uploaded onto the plane, and during the flight updated with only the
critical information or information that requires only a low bandwidth.

ATM information is inherently dynamic: Government authorities and authoritative sources push new
data and updates to existing data. Hence, the semantic container approach requires a mechanism to
keep the contained ATM information up to date. The proposed semantic container metamodel paves
the way for both push- and pull-based handling of updates.

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

13

Founding Members

3.2 Decreased network load and computation effort
Semantic containers allow SWIM services to cache frequently requested ATM information (e.g.,
weather data) for reuse. Multiple service providers may request the same ATM information from a
remote entity. Typically, each request for ATM information is processed individually, thereby putting
stress on the available bandwidth. With a semantic container management system in place, SWIM
services may cache frequently requested ATM information as semantic containers at locations where
they are frequently needed, thereby reducing the bandwidth and computation effort, including human
processing and approval. For example, a NOTAM filtering service may cache relevant NOTAMs for the
most important flight routes as semantic containers. When concrete requests for specific flights come
in, rather than sifting through the whole body of NOTAMs currently in place, the service may use the
pre-filtered semantic containers as a starting point for further filtering.

EDITION [01.00.01]

14

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

4 Distribution and replication
In the following, we present UML class diagrams that translate into an RDF vocabulary for the ontology-
based management of semantic container distribution and replication (see D 3.2). The UML models
themselves can be considered an ontology for semantic container management, which allows for the
combination with other ATM ontologies and ontology modules (see D 1.1) that serve for the faceted
semantic description of packages of ATM information (see D 2.1).

4.1 Logical containers
In analogy to the well-known ANSI/SPARC architecture for database management systems [14] as well
as theory on distributed databases which considers logical and physical fragments [2], we distinguish
between logical and physical aspects of semantic container management. In this respect, the word
“logical” relates to information independent from its storage location and the word “physical” relates
to information that is stored at a particular site. A semantic container is primarily a logical unit of data
items with a semantic label that states a membership condition for data items. The membership
condition expresses a commitment by the creator of the container: The semantic container comprises
all data items that satisfy the membership condition (see D 2.1).

Figure 1 illustrates the metamodel of the faceted membership condition that is part of the semantic
label. Facets are dimensions of semantic description, and can be classified into spatial, temporal, and
other semantic facets. For example, a spatial facet may describe the geographic focus of the DNOTAMs
in a semantic container, a temporal facet the time of validity of the DNOTAMs, another semantic facet
may refer to the type of aircraft for which the contained DNOTAMs are relevant.

The facet values that a semantic label assigns for each facet come from an ontology. For example, a
DNOTAM container may contain DNOTAMs relevant for fixed-wing aircraft, with fixed-wing aircraft
being represented by a concept in an ontology derived from the ATM Information Reference Model
(AIRM). A single facet may be defined by multiple ontologies, and the same ontology may serve to
define the same facet.

Figure 2 illustrates instantiation of the metamodel in Figure 1. The container METARs<Region: LSAS>
has the LSAS concept from the AIRM ontology as value for the Geography spatial facet. Similarly, the
container METARs<Region: EDGG> has the EDGG concept from some ontology as value for the
Geography spatial facet.

Besides the semantic label, a logical container may also have administrative metadata (Figure 3). These
administrative metadata may be technical or quality metadata (see D 2.1). The metamodel of the
semantic container approach is intentionally flexible on what kind of administrative metadata is
included. Logical containers may have any kind and number of administrative metadata attributes. To
an administrative metadata attribute, a logical container assigns a literal value. In the logical view of
semantic containers, administrative metadata may refer to the expected accuracy of the contained
data items (quality metadata), e.g., of weather forecasts. Similarly, technical metadata may state
permissible data formats, e.g., XML or JSON. Other quality metadata may define the expected update
frequency of the semantic container.

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

15

Founding Members

In a distributed SWIM environment, the semantic description and the administrative metadata of the
containers is important in order to find logical containers that fit a specific information need and
requirements with respect to data quality and technical characteristics (such as data format). In a
repository of logical containers, users and applications may look for containers with a certain content
and properties. The actual content for a logical container may then be retrieved from different storage
locations. Each logical container may have multiple copies, or replicas: These copies are the physical
containers, which we describe in the next section.

Figure 1. Class diagram “Facet” in the logical view: Logical containers and their semantic labels

class Facet

SemanticLabel Facet

LogicalContainer

Ontology

ConceptSemanticLabelToFacet

SpatialFacet TemporalFacet SemanticFacet

*

definedBy

*

1..*

1

1

+membershipCondition1

*

+facetValue

1

* 1..*

Figure 2. Object diagram “Facet”: Examples of logical containers and their semantic labels

object Facet

METARs<Region: LSAS>:
LogicalContainer

METARs<Region: EDGG>:
LogicalContainer

:SemanticLabel
Geography:
SpatialFacet:SemanticLabelToFacet

LSAS: Concept :Ontology

:SemanticLabel :SemanticLabelToFacet

EDGG: Concept

+membershipCondition

+membershipCondition

+facetValue

+facetValue

definedBy

EDITION [01.00.01]

16

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

4.2 Physical containers and their allocation
A semantic container can also be an actual physical package of data items, meaning that each logical
semantic container also may have an allocation at a specific physical server location as well as replicas
at multiple other locations (see Figure 4). For example, as illustrated in Figure 5, a logical semantic
container with all DNOTAMs for a flight from Zurich to Frankfurt may be allocated on servers at Zurich
airport and Frankfurt airport, or on the aircraft that conducts a specific flight from Munich to Frankfurt.
Note that the Location class in the metamodel refers to a server or virtual machine, and not to an
actual geographic location. For example, Zurich airport may have multiple server locations. The class
EntityElementaryLogicalContainer in the object diagram refers to a container that only contains data
items of a specific kind, e.g., NOTAMs, as opposed to a composite container (see Section 6.3).

We opt for a simple, yet powerful, distribution and replication concept: Each logical semantic container
has one primary copy stored at some location, and potentially multiple replicas (secondary copies)
stored at other locations. We note, however, that also other distribution and replication concepts may
be considered, including decentralized solutions and reference-only containers. The former refers to a
solution where no copy of a logical container is a designated primary. The latter refers to containers
that have no physical materialization but are only logical concepts materialized upon request. We
further discuss push- and pull-based consistency management in Section 5.2.

A physical container represents one copy of a logical container stored at a location. The logical
container’s primary allocation is the location of the physical container that is the logical container’s
primary copy. The secondary copies must be kept in sync with the primary copy. The local container
management systems on each location may subscribe to receive updates for the secondary copies of
a specific logical container that these locations hold. Alternatively, a pull-based approach may be
followed. In that case, a physical container must store the date when the last sync with its primary
copy has occurred, in order to be able to judge whether a synchronization should be attempted or not,
which is also a form of administrative metadata.

Figure 3. Class diagram “Administrative” in the logical view: Logical containers and their administrative metadata

class Administrative

AdministrativeMetadataLogicalContainer

LogicalContainerToAdministrativeMetadata Literal

TechnicalMetadata QualityMetadata

* *

*

+value

1

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

17

Founding Members

Figure 4. Class diagram “Allocation” in the physical view: Replication of semantic containers

class Allocation

PhysicalContainer

Logical::LogicalContainer

Location

0..1

+secondaryCopy *

*

+/secondaryAllocation *

*

+allocation

1

0..1

+primaryCopy 1

*

+/primaryAllocation 1

*
pushUpdatesTo

+subscriber*

Figure 5. Object diagram “Allocation”: Examples of replication of semantic containers

object Allocation

ServerZurich1:
Location

ServerFrankfurt1:
Location

EFBAircraft1:
Location

NOTAMs<Route: ZRH-FRA>:
EntityElementaryLogicalContainer

C1: EntityElementaryPhysicalContainer

C2: EntityElementaryPhysicalContainer

C3: EntityElementaryPhysicalContainer

+secondaryCopy
+/secondaryAllocation

+secondaryCopy +/secondaryAllocation

+allocation

+/primaryAllocation pushUpdatesTo

+subscriber

+allocation

+allocation

+primaryCopy

EDITION [01.00.01]

18

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 6. Class diagram “Administrative” in the physical view: Physical containers and their administrative metadata

class Administrative

PhysicalContainer AdministrativeMetadata

PhysicalContainerToAdministrativeMetadata Literal

TechnicalMetadata QualityMetadata

* *

*

+value

1

Figure 7. Object diagram “PhysicalAdministrative”: Technical metadata of physical containers

object PhysicalAdministrative

C1: EntityElementaryPhysicalContainer

C2: EntityElementaryPhysicalContainer

NOTAMs<Route: ZRH-FRA>:
EntityElementaryLogicalContainer

lastSyncWithPrimaryCopy:
TechnicalMetadata

:PhysicalContainerToAdministrativeMetadata

23/03/2018 03:30 PM:
Literal

lastUpdateFromPrimarySource:
TechnicalMetadata

lastCheckForUpdatesFromPrimarySource:
TechnicalMetadata

:PhysicalContainerToAdministrativeMetadata

:PhysicalContainerToAdministrativeMetadata

23/03/2018 03:00 PM:
Literal

23/03/2017 03:15 PM:
Literal

+value

+primaryCopy

+value

+value

+secondaryCopy

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

19

Founding Members

Each physical container may thus also have administrative metadata (Figure 6), independently from
the logical container and the other physical replicas. An administrative metadata attribute may hence
be the date and time of the last synchronization of a secondary physical container with the
corresponding primary copy. An administrative metadata attribute may also be the date and time of
the last update or last check for updates of a physical container from the source containers from which
the container has been derived (see Chapter 6 for more information on container provenance).
Figure 7 illustrates administrative data attributes of physical semantic containers. The NOTAM
container for the route from Zurich to Frankfurt has a primary copy and a secondary copy at some
locations (not shown in the diagram). Assume the logical container is derived from another source
container. The C1 primary copy of the container has attributes that indicate when the last update from
a primary source took place and when the last check for updates from the primary source took place.
The C2 secondary copy of the container has an attribute that indicates when the last synchronization
with the primary copy took place.

4.3 Determining allocation sites
The semantic description of the container contents may serve to determine beneficial allocation sites
with the goal to improve performance, availability, or both. Spatial facet values could serve to allocate
containers on different servers. For example, knowing that a container contains the data for a specific
flight, the container could be allocated on servers at the departure and arrival airports, as well as
nearby airports relevant for the route. In order for that approach to work, ontological concepts used
for the faceted semantic description of data containers would have to be linked with server locations.
Similarly, time facets may serve to identify packages of information that are only relevant for ex post
analysis and are not operation-critical because the date has already passed.

We refer to literature on distributed database systems [2] for specific algorithms. The semantic facets
may serve as additional parameters for deciding where to allocate a container. Containers may either
be allocated at a single, most-beneficial allocation site using a best-fit algorithm, or allocated at
multiple locations using an all-beneficial-sites algorithm.

The semantic container approach – and the metamodel described in this paper – allows for the
consideration of the semantics of ATM information packages as criteria for the allocation decision.
These decisions, however, are dependent on the specific business case.

EDITION [01.00.01]

20

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

5 Consistency management
Concerning updates to semantic containers, we distinguish containers that keep versions from
containers that do not. Unversioned containers consist of contents and when that content changes,
the previous content is forgotten. For auditability’s sake, however, versioned containers are preferred
since they allow to rebuild past states of information that led to certain decisions, which is important
in the case of accidents and failures.

5.1 Versioning2 of semantic containers
A versioned logical container has multiple versions of its contents as well as one current version (see
Figure 8). Physically, only the versioned elementary containers have actual datasets (see Figure 9). A
composite container’s datasets (see Section 6.3) are its component physical containers’ datasets. Now
an elementary physical container has an initial dataset, and each update adds a delta set to the physical
container. Concerning the composition of the physical container’s current version, we consider two
possibilities: Either the delta set adds to the set of valid data items – meaning that after the first
update, the initial set plus the delta set constitute the container’s current version – or the delta set
replaces the previous sets and becomes the sole constituent of the current version. Either way, all
delta sets are preserved for future auditability. Each data set also stores its creation time for audit
purposes.

In case the primary copy is not reachable for synchronization, the secondary copies may be updated
through other secondary copies, or alternative sources. In that case, however, should the alternative
source be a non-primary source of information (see Chapter 6), the added dataset is a degenerated
dataset. A version that consists of at least one degenerated dataset is a degenerated version. In that
case, the contents of the physical version are likely of lesser quality than those of a regular physical
version, or do not fully meet expected freshness requirements. Once the primary copy becomes
available again, the degenerated datasets can be replaced by the regular sets in the current version,
but are kept for audit purposes.

The administrative metadata captured for physical containers, although flexible, should include at least
the following for the purposes of our distribution concept with one primary copy:

• lastSynchronizationWithPrimaryCopy: When was the physical container last synchronized
with the corresponding primary copy.

• lastCheckForSynchronizationWithPrimaryCopy: When was the primary copy last checked for
updates that must also be applied to the secondary copy.

• lastSynchronizationWithSecondaryCopy: When was the physical container last synchronized
with a secondary copy.

A versioned composite physical container consists of multiple component (versioned) physical
containers. The datasets of a composite container derive from the datasets of its components. Note

2 In the field of configuration management, “version” is a generic term that can refer either to “revision” (changes over time,
made in sequence) or “variant” (changes made in parallel, e.g. to adapt to different platforms). To be precise: in this document
we are using “version” to refer to revisions. We use “version” as it as more widely understood term.

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

21

Founding Members

that all components of a composite container are allocated together on the same location. In
Chapter 6, we define how logical and physical containers are derived by services from other containers,
formalizing the principles of derivation chains as described in D 3.1.

Figure 10 illustrates an instantiation of the semantic container metamodel for versioning from the
physical viewpoint. A versioned elementary physical container initially consists of a regular physical
dataset. The first version is regular and consists only of the initial set. The second version consists of
the initial dataset and the first delta set. The first delta set (S2) and the corresponding second version
are regular. Then, for some reason, a degenerated physical dataset (S3) is added, making the third
version, which consists of the first, second, and third datasets, a degenerated physical version. The
delta set S4, on the other hand, is regular again. The fourth version consists of S1, S2, and S4, but not

Figure 8. Class diagram “Versioning” in the logical view: Container versioning

class Versioning

LogicalContainer

VersionedLogicalContainer LogicalVersionUnversionedLogicalContainer
+/version

1..*1
+/currentVersion

1
{subsets
version}

1

Figure 9. Class diagram “Versioning” in the physical view: Versions and physical datasets

class Versioning

Logical::LogicalContainerPhysicalContainer

VersionedPhysicalContainer Logical::VersionedLogicalContainer

Location

Logical::LogicalVersionPhysicalVersion

RegularPhysicalVersion DegeneratedPhysicalVersion

PhysicalDataset

+ creationTime: datetime

RegularPhysicalDataset DegeneratedPhysicalDataset

VersionedElementaryPhysicalContainer

ElementaryPhysicalContainer

VersionedCompositePhysicalContainer

CompositePhysicalContainer

UnversionedPhysicalContainer

0..1

+initialSet 1
+/currentVersion 1

1
0..1

+deltaSet *

1..*

+dataset

1..*
1

+/allocation

1..*

+component

1..*
{redefines component}

0..1

+/allocatedPhysicalVersion

*

+/allocation 1
*

+/allocation

1..*

+currentVersion 1

0..1

+version 1..*

1

+/version 1..*

1

EDITION [01.00.01]

22

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

the generated dataset S3. Creation times of datasets, which are not shown in the example, allow for a
reconstruction of the state of a physical container at any point in time, allowing for auditability in case
of incidents.

5.2 Push and pull synchronization
The decision for a particular synchronization approach is orthogonal to the presented semantic
container approach: The semantic container approach supports both push- and pull-based
synchronization. A pull-based synchronization approach works without the source container – and
management system thereof – knowing about the existence of the derived container that is to be kept
in synchronization. A push-based synchronization approach lets semantic containers subscribe for
updates at the source container. The source container has a list of subscribers for updates and the
management system of the source container automatically pushes updates to the derived containers.

We accommodate for push-based synchronization in the metamodel by having a pushUpdatesTo
relationship from logical container to location (see Figure 4). The location is a subscriber to updates,
the container management system at a subscribing location will automatically receive updates from
the primary location of the logical container.

Pull-based synchronization requires administrative metadata at the logical and physical level. Each
physical container requires administrative metadata that records when the last synchronization and
the last check for updates from the primary copy (and possibly secondary copy). Using the metadata,
the container management system that manages the physical container can periodically check for
updates, depending on the system’s settings.

Figure 10. Object diagram “Versioning”: Example versions and physical datasets

object Versioning

NOTAMs<Route: ZRH-FRA>#1:
VersionedElementaryPhysicalContainer

S1: RegularPhysicalDataset

S2: RegularPhysicalDataset

S4: RegularPhysicalDataset

S3: DegeneratedPhysicalDataset

V1: RegularPhysicalVersion

V2: RegularPhysicalVersion

V4: RegularPhysicalVersion

V3: DegeneratedPhysicalVersion

+initialSet

+version

+deltaSet +version

+version

+version

+deltaSet

+currentVersion

+deltaSet

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

23

Founding Members

6 Provenance and composition
The lineage of a semantic container in a derivation chain should be represented in the container
management system. A logical container may have multiple primary sources as well as alternative
secondary sources (Figure 11). The primary sources are the sources of prime quality. Secondary
sources usually offer degraded quality.

6.1 Lineage of logical containers
A logical container derives from a primary or secondary source through a service call (Figure 11).
Typically, a logical container has a single primary source, which is the source with the highest quality
and freshness. In rare circumstance, a semantic container may have multiple alternative primary
sources. Secondary sources of lesser quality are only used when no primary source is available at the
expected freshness. Primary or secondary sources are again semantic containers. A service call has a
semantic label as arguments and possibly many static containers as additional input. For example,
static containers supplied to a digital briefing service as additional input may include a list of relevant
aerodromes for a particular flight route. These containers are static in a sense that their input does not
change or is only very slowly changing. The semantic label that serves as the arguments reflect the
semantic label of the result container. Although omitted in the figure, the semantic label also provides
a value for each associated facet.

A service call can have multiple occurrences. The call occurrences, on a physical level, are then what
actually produce a dataset (see Figure 13). Each service call belongs to a service, which has in turn a
service provider.

Figure 12 illustrates an example lineage of semantic container according to the metamodel. The
NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> container has two (alternative) primary sources. The
container may either be derived through one service call from the NOTAMs<Region: Europe>

Figure 11. Class diagram “Service” in the logical view: Lineage of semantic containers

class Service

LogicalServiceLogicalServiceCall ServiceProvider

FacetSemanticLabel

LogicalContainer

PrimarySourceDerivation SecondarySourceDerivation

LogicalServiceCallOccurrence

StaticLogicalContainer

+primarySource
*

*

0..1

+arguments 0..1

*

+secondaryInput*

1

+call

* *

+provider

11

+occurrence

*

*

+secondarySource
*

*

+call 1

*

+call
1

* 1..*

*

+parameter *

EDITION [01.00.01]

24

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

container, which contains all NOTAMs relevant to Europe, or through another service call from the
NOTAMs<Route: ZRH-FRA> container, which contains all NOTAMs relevant for the route from Zurich
to Frankfurt. Both calls that serve to derive the NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>
container from its sources are calls of the NOTAMFilterService. The NOTAMFilterService – we do not
specify a provider in this example – has Date and Route facets as parameters, although not all service
calls must supply arguments for all parameters. The Filter NOTAMs for 05/04/2017 service call, for
example, which derives the NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> container from the
NOTAMs<Route: ZRH-FRA> container, receives as arguments a semantic label with only the
05/04/2017 concept for facet value. The Filter NOTAMs for ZRH-FRA and 05/04/2017 service call, on
the other hand, which derives the NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> container from the
NOTAMs<Region: Europe> container, receives as arguments a semantic label with both the date and
the ZRH-FRA concept for facet values.

6.2 Provenance of physical datasets
Services, just like containers, have logical and physical aspects that must be considered. Each logical
service has a provider and may be realized as multiple physical services running at different locations.
The location that produces a dataset may be different from the location where the source or result

Figure 12. Object diagram “LogicalService”: Example lineage of logical containers

object LogicalService

NOTAMs<Route: ZRH-FRA>:
EntityElementaryLogicalContainer

NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>:
EntityElementaryLogicalContainer

NOTAMFilterService:
ElementaryLogicalService

Filter NOTAMs for 05/04/2017:
ElementaryLogicalServiceCall

:PrimarySourceDerivation

:SemanticLabel Date:
TemporalFacet

:SemanticLabelToFacet

05/04/2017:
Concept

:PrimarySourceDerivationNOTAMs<Region: Europe>:
EntityElementaryLogicalContainer

Filter NOTAMs for ZRH-FRA and 05/04/2017:
ElementaryLogicalServiceCall

:SemanticLabel :SemanticLabelToFacet

:SemanticLabelToFacet ZRH-FRA: Concept

Route:
SpatialFacet

definedBy

+parameter

+call

+call

+facetValue

+arguments

+facetValue

+call

definedBy

+primarySource

+arguments

+primarySource

+facetValue

+call

+parameter

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

25

Founding Members

dataset resides. The references to physical service calls and call occurrences allows to trace the
creation of a dataset back to a specific service provider and physical server where the service was
actually executed. Besides tracking provenance, the linking back to the creating service also allows
assumptions about the data quality, since potential data quality attributes of the information service
from the SWIM registry (when in place) can be used also to describe the quality of the semantic
containers produced by the services.

The provenance concept of the semantic container approach was inspired by the PROV-O
ontology [13].The PROV-O ontology considers activities that are associated with an agent and use
entities that were themselves generated by activities and derived from other entities. The semantic
container approach builds on that provenance concept by considering services (activities) that are
associated with a service provider (agent) and use containers (entities) that were themselves
generated by services (activities) and derived from other containers (entities). In contrast to the PROV-
O ontology, however, we distinguish between primary and secondary sources.

Figure 13 shows the metamodel for the definition of provenance of physical datasets. The classes
LogicalService, LogicalServiceCall, and LogicalServiceCallOccurrence have physical counterparts.
Hence, PhysicalService and PhysicalServiceCall represent the realizations of LogicalService and
LogicalServiceCall, respectively. A physical service is allocated at a location, the server that hosts the
service. A physical service call may have multiple physical service call occurrences
(PhysicalServiceCallOccurrence). A physical service call occurrence has an occurrence time.

A physical dataset has a creation time and a creating call occurrence. Each physical call occurrence
produces a single physical dataset.

A physical container may have multiple sources. The PhysicalSourceDerivation class represents the
relationship between a source physical container and the result physical container. The derivation of
a physical container from another physical container is done by a physical service call. Note that there
can be multiple derivation links between the same physical source and result containers. A physical

Figure 13. Class diagram “Service” in the physical view: Provenance of physical datasets

class Service

Logical::LogicalServiceLogical::LogicalServiceCall

Location

PhysicalService

Logical::LogicalServiceCallOccurrence

PhysicalServiceCallPhysicalServiceCallOccurrence

+ occurrenceTime: datetime

PhysicalDataset

+ creationTime: datetime PhysicalContainer

PhysicalSourceDerivation

1

+realization 1..*

1

+occurrence

*

*

+call 1

+occurrence

* 1

+creatingCallOccurrence1

1
*

+source

1

*

+allocation 1

*

+/allocation 1..*

*

+secondaryInput *

1

+/logicalCallOccurrence
1

1

*

1

+call

*

1

+call

*
1

+realization *

EDITION [01.00.01]

26

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

container C1 can have one of its datasets derived from a physical container C2 by a physical service call
of a physical service S1. The container C1 can have another one of its datasets derived from that same
physical container C2 by a physical service call of a physical service S2. Both S1 and S2 could be
realizations at different locations of the same logical service.

Figure 14 illustrates an instantiation of the metamodel for physical dataset provenance. The logical
container NOTAMs<Route: ZRH-FRA, Date: 05/04/2017> has the primary copy NOTAMs<Route: ZRH-
FRA, Date: 05/04/2017>#1. The logical container derives from the primary source container
NOTAMs<Region: Europe>, which has a primary copy NOTAMs<Region: Europe>#1 and a secondary
copy NOTAMs<Region: Europe>#2. The NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>#1 physical

Figure 14. Object diagram “PhysicalService”: Example provenance of physical datasets

object PhysicalService

:PrimarySourceDerivation

NOTAMs<Region: Europe>: EntityElementaryLogicalContainer

Filter NOTAMs for ZRH-FRA and 05/04/2017:
ElementaryLogicalServiceCall

NOTAMFilterService:
ElementaryLogicalService

:ElementaryPhysicalServiceCall

:PhysicalServiceCallOccurrence

occurrenceTime = 05-04-2017 8:30 AM

NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>:
EntityElementaryLogicalContainer

NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>#1:
VersionedElementaryPhysicalContainer

DS1: RegularPhysicalDataset

creationTime = 05-04-2017 8:33 AM

DS2: RegularPhysicalDataset

creationTime = 05-04-2017 10:32 AM

:PhysicalServiceCallOccurrence

occurrenceTime = 05-04-2017 10:30 AM

NOTAMs<Region: Europe>#1:
EntityElementaryPhysicalContainer

NOTAMs<Region: Europe>#2:
EntityElementaryPhysicalContainer

:PhysicalSourceDerivation

NOTAMFilterService@GroupEAD#1:
ElementaryPhysicalService

:PhysicalSourceDerivation :ElementaryPhysicalServiceCall

DS3: RegularPhysicalDataset

creationTime = 05-04-2017 12:32 PM

:PhysicalServiceCallOccurrence

occurrenceTime = 05-04-2017 12:30 PM

+call

+deltaSet

+deltaSet

+realization

+occurrence

+primaryCopy

+secondaryCopy

+initialSet

+call

+call

+call

+source

+occurrence

+call

+creatingServiceCall

+realization

+primaryCopy

+source

+creatingServiceCall

+call

+creatingServiceCall

+realization

+primarySource

+occurrence

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

27

Founding Members

container has an initial set and two delta sets (all regular). The NOTAMFilterService as physically
realized by the NOTAMFilterService@GroupEAD was used to derive all three datasets. Two different
calls, and three different call occurrences, however, were used to create the different datasets. The
datasets DS1 and DS2 were created by occurrences of the same service call. The service call was used
to create the datasets with the NOTAMs<Region: Europe>#2 as input. The dataset DS3 was created by
a different service call, which uses the NOTAMs<Region: Europe>#1 as input. Hence, the
NOTAMs<Route: ZRH-FRA, Date: 05/04/2017>#1 container, in its current state with three datasets,
derived from the NOTAMs<Region: Europe>#1 and NOTAMs<Region: Europe>#2 container.

6.3 Container composition
Elementary containers consist of data items of a particular data item type. We distinguish between
annotation elementary containers and entity elementary containers. An entity elementary container
consists of data items of a particular entity type, e.g. NOTAMs, METARs. An annotation elementary
container consists of data items that are annotation of a particular annotation type annotating entities
of a particular entity type, e.g., NOTAM importances annotating NOTAMs. Figure 15 shows the
metamodel for elementary logical containers. Figure 16 shows the metamodel for elementary physical
containers.

Composite logical containers consist of other semantic containers (Figure 17). A composite container
may either be homogeneous or heterogeneous. A homogeneous composite container consists of
component containers (elementary or homogeneous composite) that all contain items of the same
data item type. A heterogeneous composite container may consist of component containers with
different types of data. Figure 18 illustrates an example instantiation of a heterogeneous composite
logical container. The composite container has component containers that contain data items of types
METAR, NOTAM, and NOTAMPriority. A homogeneous composite container with METARs for the
EDGG and LSAS region, an entity elementary container with NOTAMs for the route from Zurich to
Frankfurt, and an annotation elementary container with NOTAM priorities for a specific flight from
Zurich to Frankfurt on a specific date make up the component containers of the composite container.

Figure 15. Class diagram “Elementary” in the logical view: Types of elementary semantic containers

class Elementary

LogicalContainer

ElementaryLogicalContainer

DataItemType

EntityType AnnotationType

EntityElementaryLogicalContainerAnnotationElementaryLogicalContainer

*

+entityType 1

*

annotates

1

*

+annotationType 1

EDITION [01.00.01]

28

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 16. Class diagram “Elementary” in the physical view: Types of elementary semantic containers

class Elementary

LogicalContainer
Logical::ElementaryLogicalContainer

ElementaryPhysicalContainer

PhysicalContainer

Logical::
EntityElementaryLogicalContainer

EntityElementaryPhysicalContainer

Logical::AnnotationElementaryLogicalContainer AnnotationElementaryPhysicalContainer

0..1

+primaryCopy

1
{redefines primaryCopy}

0..1

+secondaryCopy

*
{redefines

secondaryCopy}

0..1

+primaryCopy

1
{redefines primaryCopy}

0..1

+secondaryCopy

*
{redefines secondaryCopy}

0..1

+secondaryCopy

{redefines secondaryCopy}

0..1

+primaryCopy

1
{redefines primaryCopy}

Figure 17. Class diagram “Composite” in the logical view: Types of composite semantic containers

class Composite

LogicalContainer

CompositeLogicalContainer

HeterogeneousCompositeLogicalContainer HomogeneousCompositeLogicalContainer DataItemType

componentId

1..*

0..1

*

componentsContainItemsOfType

1

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

29

Founding Members

The physical model (Figure 19) of container composition mainly redefines the relationships of physical
container.

Figure 18. Object diagram “LogicalComposite”: Example composite semantic container

object LogicalComposite

METARs<Region: EDGG>:
EntityElementaryLogicalContainer

METARs<Region: LSAS>:
EntityElementaryLogicalContainer

METARs<Region: EDGG> UNION METARs<Region: LSAS>:
HomogeneousCompositeLogicalContainer

METAR:
DataItemType

NOTAMs<Route: ZRH-FRA>:
EntityElementaryLogicalContainer

NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>:
AnnotationElementaryLogicalContainer

METARs<Region: EDGG> UNION METARs<Region: LSAS> UNION NOTAMs<Route: ZRH-FRA>
UNION NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>:

HeterogeneousCompositeLogicalContainer

componentsContainItemsOfType

EDITION [01.00.01]

30

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 19. Class diagram “Composite” in the physical view: Types composite semantic containers

class Composite

LogicalContainer
Logical::CompositeLogicalContainer

Logical::HeterogeneousCompositeLogicalContainer

Logical::
HomogeneousCompositeLogicalContainer

PhysicalContainer

CompositePhysicalContainer

HomogeneousCompositePhysicalContainer

HeterogeneousCompositePhysicalContainer

componentID

0..1

+secondaryCopy

*
{redefines secondaryCopy}

0..1

+secondaryCopy

*
{redefines secondaryCopy}

0..1

+primaryCopy

1
{redefines primaryCopy}

0..1

+primaryCopy

1
{redefines primaryCopy}

+component

*

0..1

0..1

+secondaryCopy

*
{redefines secondaryCopy}

0..1

+primaryCopy

1
{redefines primaryCopy}

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

31

Founding Members

The provenance concept must likewise be adapted for composite containers: Composite logical
containers are created by composite logical services. Figure 20 shows the metamodel for service
composition, and it reflects the metamodel for container composition. A composite logical service
consists of component logical services. A composite logical service has several composite logical
service calls. The derivation of a composite logical container is a primary or secondary source
composition – a specialization of primary and secondary source derivation, respectively.

Figure 20. Class diagram “ServiceComposition” in the logical view: Composition of services

class ServiceComposition

LogicalServiceLogicalServiceCall

CompositeLogicalService

ElementaryLogicalServiceElementaryLogicalServiceCall

CompositeLogicalServiceCall

CompositeLogicalContainer LogicalContainer

PrimarySourceComposition

PrimarySourceDerivation

SecondarySourceComposition SecondarySourceDerivation
*

+call1
{redefines call}

1

+call

*

*

+primarySource

1 .. *
{redefines

primarySource}

1

+call

*
{redefines call}

1

+call

*
{redefines

call}

+secondarySource

*
{redefines

secondarySource}

*

+component 1..*

0..1

*

+call1
{redefines call}

+component

1..*

0..1

EDITION [01.00.01]

32

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 21 illustrates an example instantiation of the metamodel for logical service composition. A
BriefingService instance of CompositeLogicalService may be called to get the briefing information for a
specific flight. A heterogeneous composite logical container with METARs for regions EDGG and LSAS
as well as NOTAMs for the route from Zurich to Frankfurt and NOTAM priorities for a specific flight
may be derived by one such call to the briefing service. Each PrimarySourceComposition link makes
reference to the same call. A call can only be used for one composite container: A call binds together
all the primary source compositions that belong together. Another call binds together another,
alternative primary or secondary derivations (compositions) of a composite semantic container.

Figure 21. Object diagram “LogicalServiceComposition”: Composition of services

object LogicalServiceComposition

NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>:
AnnotationElementaryLogicalContainer

NOTAMs<Route: ZRH-FRA>:
EntityElementaryLogicalContainer

METARs<Region: EDGG> UNION METARs<Region: LSAS>:
HomogeneousCompositeLogicalContainer

METARs<Region: LSAS>:
EntityElementaryLogicalContainer

METARs<Region: EDGG>:
EntityElementaryLogicalContainer

METARs<Region: EDGG> UNION METARs<Region: LSAS> UNION NOTAMs<Route: ZRH-FRA> UNION NOTAMPriorities<Flight: LX1068, Date: 05/04/2017>:
HeterogeneousCompositeLogicalContainer

BriefingService:
CompositeLogicalService

:PrimarySourceComposition

:PrimarySourceComposition

:PrimarySourceComposition

:PrimarySourceComposition

:PrimarySourceComposition

Get Briefing Information for Flight LX1068: CompositeLogicalServiceCall

+call +call +call +call+call

+call

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

33

Founding Members

Figure 22 shows the metamodel for service composition at the physical level. Physical service
composition basically redefines the relationships of physical services and physical service calls.

Figure 22. Class diagram “ServiceComposition” in the physical view: Composition of services

class ServiceComposition

PhysicalServicePhysicalServiceCall

ElementaryPhysicalService

CompositePhysicalService

LogicalService
Logical::ElementaryLogicalService

LogicalService
Logical::CompositeLogicalService

ElementaryPhysicalServiceCall

LogicalServiceCall
Logical::ElementaryLogicalServiceCall

CompositePhysicalServiceCall

LogicalServiceCall
Logical::CompositeLogicalServiceCall

+realization
*

{redefines realization}

1

1

+call

*

1

+realization

1..*
{redefines realization}

1

+call

*
{redefines call}

1

+call

*
{redefines call}

+component 1..*

1

+realization
*

{redefines realization}

1 1

+realization
1..*

{redefines realization}

EDITION [01.00.01]

34

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

7 Semantic container management system:
possible architecture

In this section we introduce a possible architecture for a semantic container management system. The
semantic container approach as introduced in deliverable D 2.1 and the language (UML metamodel)
introduced in this deliverable may be implemented in many different forms, it is independent of a
concrete software and data distribution architecture. Other and maybe more adequate architectures
may be developed in the future based on the vast literature on distributed systems (e.g., [15, 16]). The
herein described proposed architecture serves two purposes, namely

• to give a more complete picture of a globally distributed semantic container management
system, and

• to serve as a starting point for the development of more advanced software and data
distribution architectures.

A semantic container management system is distributed over multiple server locations and multiple
client locations. Locations are connected over the Internet. Container content and metadata are
allocated redundantly at multiple locations. Centrally-provided software is run independently at the
different locations which cooperate to provide globally-distributed semantic container management.

7.1 Data Distribution Architecture
Container content and metadata are allocated redundantly at multiple locations. A semantic container
consists of location-independent metadata (represented by the logical semantic container), location-
dependent metadata (represented by the physical semantic container) and content (also referred to
as data or information, e.g., a set of AIXM Digital NOTAMs).

Metadata is modelled by the UML metamodel presented in this deliverable which can be translated
into an RDF vocabulary (see D 3.2).The container metadata are then represented as RDF triples. All
container metadata can be collected into an RDF graph. This RDF graph of all semantic containers is
fully replicated at every server location and partially replicated at client locations. Each location runs
an RDF database management system (a.k.a. graph store) and SPARQL query engine for storing,
modifying and querying (parts of) the RDF graph. Modifications of metadata at some location are
replicated in an asynchronous manner to other locations to provide for redundancy of metadata in
case of connection or network failures. Replica consistency of metadata is maintained by giving priority
to most recent writes.

Container contents remain in their original form (XML documents according to AIXM, IWXXM, or
FIXM). Each location runs an XML database management system (a.k.a. document store) for storing
and querying the contents of its allocated containers.

7.2 Software Distribution Architecture
Each server location independently runs a software package which makes available functionality for
managing and querying data and metadata via RESTful web services. A client location (or sink), e.g., an
electronic flight bag on board of an aircraft, may run a client variant of the software package which

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

35

Founding Members

provides a subset of this functionality. The software package (in its server and client variants) is
distributed from a central software repository.

A client location provides functionality for:

• Allocating an existing semantic container

• Provisioning of semantic containers including content and metadata

• Keeping data and metadata of allocated semantic containers up-to-date via push and/or pull
from their primary sources

• Keeping semantic containers up-to-date from alternative sources in case of unavailability of
primary sources

A server location additionally provides functionality for:

• Creating a semantic container, storing its primary copy, deriving locations for secondary copies

• Calling services to derive/update the contents of semantic containers

• Forwarding modifications of semantic containers to client containers via push and pull

• Creating, updating and deleting semantic containers

• Discovery of semantic containers

EDITION [01.00.01]

36

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

8 Conclusion
A replication mechanism for the redundant storage of semantic containers promises higher availability
of mission-critical data within SWIM while at the same time reducing the network load of SWIM. By
packaging ATM information in semantic containers, SWIM information services may cache often used
information and thus avoid frequent calls to other SWIM services. Applications may store local copies
of important information to hedge against network outage when availability of the information is
mission-critical, e.g., on an aircraft. Furthermore, semantic containers are a mechanism to retain
provenance information when packaging ATM information from different SWIM information services.
Thus, when a composite SWIM information service returns a composite semantic container based
upon information from various other SWIM services, provenance information about the semantic
container’s components is preserved, which is important for auditability purposes.

A semantic container management system providing mission-critical data and metadata requires
special consideration of trustful communication to ensure authentication, integrity, and
nonrepudiation of data and metadata. In a decentralized system, trust can only be provided based on
cryptographic protocols (see [17]). This is clearly out of scope of the BEST project. Future research
needs to investigate how BEST's semantic containers can be combined with cryptographic protocols
(e.g., using blockchain technology) to provide trustful semantic container management and secure
SWIM.

As a concluding remark, we note that the BEST semantic container approach is not meant to rival
SWIM, but to provide a data-centric layer for SWIM information services, which the SWIM services and
applications may use for the management of ATM information.

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

37

Founding Members

9 References
[1] E. Gringinger, C. Schuetz, B. Neumayr, M. Schrefl, and S. Wilson, “Towards a Value-Added

Information Layer for SWIM: The Semantic Container Approach,” in Proceedings of the 18th
Integrated Communications Navigation and Surveillance (ICNS) Conference, 2018.

[2] S. Ceri and G. Pelagatti, Distributed databases: principles and systems: McGraw-Hill, New York,
1984.

[3] M. A. Martínez-Prieto et al., Eds., Integrating flight-related information into a (Big) data lake.
2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), 2017.

[4] K. Wolstencroft et al., “The Taverna workflow suite: Designing and executing workflows of Web
Services on the desktop, web or in the cloud,” Nucleic Acids Research, vol. 41, no. Web Server
issue, W557-W561, 2013.

[5] K. Belhajjame et al., Eds., Metadata Management in the Taverna Workflow System. 2008 Eighth
IEEE International Symposium on Cluster Computing and the Grid (CCGRID), 2008.

[6] S. Zander and B. Schandl, “Context-driven RDF data replication on mobile devices,” Semant.
web, vol. 3, no. 2, pp. 131–155, 2012.

[7] S. Abiteboul et al., “Dynamic XML documents with distribution and replication,” in Proceedings
of the 2003 ACM SIGMOD international conference on Management of data, San Diego,
California: ACM, 2003, pp. 527–538.

[8] G. Koloniari and E. Pitoura, “Peer-to-peer management of XML data: Issues and research
challenges,” SIGMOD Rec, vol. 34, no. 2, pp. 6–17, 2005.

[9] K. M. Metwally, A. Jarray, and A. Karmouch, Eds., Two-phase ontology-based resource allocation
approach for IaaS cloud service. 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC), 2015.

[10] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, Eds., Database replication
techniques: A three parameter classification. Proceedings 19th IEEE Symposium on Reliable
Distributed Systems SRDS-2000, 2000.

[11] L. Xu, S. Huang, S. Hui, A. J. Elmore, and A. Parameswaran, “OrpheusDB: A Lightweight Approach
to Relational Dataset Versioning,” in Proceedings of the 2017 ACM International Conference on
Management of Data, Chicago, Illinois, USA: ACM, 2017, pp. 1655–1658.

[12] A. P. Bhardwaj et al., “DataHub: Collaborative Data Science & Dataset Version Management at
Scale,” CoRR, vol. abs/1409.0798, 2014.

[13] W3C, PROV-O: The PROV Ontology. [Online] Available: https://www.w3.org/TR/2013/REC-prov-
o-20130430/.

[14] D. A. Jardine, The ANSI/SPARC DBMS Model; Proceedings of the Second Share Working
Conference on Data Base Management Systems, Montreal, Canada, April 26-30, 1976: Elsevier
Science Inc, 1977.

[15] A. S. Tanenbaum and M. van Steen, Distributed systems: Principles and paradigms: Prentice-
Hall, 2007.

[16] M. T. Özsu and P. Valduriez, Principles of distributed database systems: Springer Science &
Business Media, 2011.

[17] B. Schneier, Applied Cryptography, 2nd ed.: John Wiley and Sons, 1996.
[18] ICAO, Aeronautical Information Services Manual, 6th ed.
[19] ICAO, Aeronautical Information Services - Annex 15, 15th ed.

EDITION [01.00.01]

38

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

[20] D. Steiner et al., “Semantic enrichment of DNOTAMs to reduce information overload in pilot
briefings,” in Proceedings of the 16th Integrated Communications Navigation and Surveillance
(ICNS) Conference, 2016.

[21] I. Kovacic et al., Eds., Ontology-based data description and discovery in a SWIM environment.
2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), 2017.

[22] B. Neumayr et al., Eds., Semantic data containers for realizing the full potential of system wide
information management. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC),
2017.

[23] R. Pelchen-Medwed and E. Porosnicu, “Enhanced pilot situational awareness through the
digital/graphical pre-flight briefing concept,” HindSight, vol. 23, pp. 66–69, 2016.

[24] D. Steiner, F. Burgstaller, E. Gringinger, M. Schrefl, and I. Kovacic, “In-Flight Provisioning and
Distribution of ATM Information,” in Proceedings of the 30th Congress of the International
Council of the Aeronautical Sciences (ICAS), 2016.

[25] S. Gabree, M. Yeh, Y. J. Jo, and others, “Electronic flight bag (EFB): 2010 industry survey,”
Federal Aviation Administration. Air Traffic Organization Operations Planning. Human Factors
Research and Engineering Group, 2010.

[26] A. Vaisman and E. Zimányi, Data Warehouse Systems - Design and Implementation: Springer,
2014.

[27] F. Burgstaller, D. Steiner, B. Neumayr, M. Schrefl, and E. Gringinger, “Using a model-driven,
knowledge-based approach to cope with complexity in filtering of notices to airmen Canberra,
Australia, February 2-5, 2016,” p. 46.

[28] C. Chen et al., “InfoNetOLAP: OLAP and mining of information networks,” in Link Mining:
Models, Algorithms, and Applications: Springer % CKR and contexts, 2010, pp. 411–438.

[29] C. Schütz, B. Neumayr, and M. Schrefl, “Business model ontologies in OLAP cubes,” in CAiSE
2013, 2013, pp. 514–529.

[30] FAA, Federal NOTAM system airport operations scenarios. Available:
https://notams.aim.faa.gov/FNSAirportOpsScenarios.pdf.

[31] R. Sherman, Business Intelligence Guidebook: Morgan Kaufmann, 2015.
[32] H. -J. Lenz and A. Shoshani, “Proceedings of the 9th International Conference on Scientific and

Statistical Database Management,” in Proceedings of SSDBM 1997, 1997, pp. 132–143.
[33] AIXM 5.1.1 - Data Model (UML).

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

39

Founding Members

10 APPENDIX A: ATM information cubes
In this appendix, we propose the use of semantic containers as the fundamental for data distribution
in ATM information cubes. The content of this appendix is an adaption of a paper submitted to the
ICAS Congress 2018 for review3, which we will further extend following an invitation by the ICAS
Congress 2018 organizers to submit to the Aeronautical Journal4 for a special issue. The research
results described in this appendix may serve as the starting point for future research that continues
the effort of the BEST project, building on the semantic container concept.

The original motivation behind ATM information cubes is as follows, but could be extended to other
types of ATM information as well: Pilot briefings, in their traditional form, drown pilots in seas of
information. Rather than unfocused swathes of ATM information, pilots require the information that
they need for their flight at hand. To this end, we introduce the notion of ATM information cubes – in
analogy to data cubes in data warehousing and OLAP. We introduce a conceptual framework for the
summarization of semantic containers using merge and abstraction operations, yielding a higher-level
management summary of relevant information.

10.1 Overview
A Pre-flight Information Bulletin (PIB) provides pilots with current Notices to Airmen relevant for a
particular flight [18]. A Notice to Airmen (NOTAM) notifies aviation personnel about temporary
changes regarding flight conditions [19], e.g., closure of air space or unserviceable navigation aids. PIBs
are traditionally delivered on paper in textual form, with limited possibilities for structuring the data,
drowning pilots in information. Digital NOTAMs (DNOTAMs), on the other hand, facilitate classification
of data items along different dimensions, e.g., importance, geographic area, flight phase, and event
scenario, that can be employed to flexibly structure the PIB in order to reduce information overload
[20]. For example, using the classification rules developed in the Semantic NOTAM (SemNOTAM)
project (see [20]), DNOTAMs can be packaged into semantic containers (see [21]), each container
comprising the DNOTAMs about the same event scenario that have the same importance for a certain
flight on a particular date in a given flight phase at some geographic location. Consider, for example,
the semantic containers on the left-hand side of Figure 23 which, given a flight and date assumed to
be fixed, contain the DNOTAMs for flight information region (FIR) segment EDDU-01 classified as an
operational restriction for the cruise flight phase and the DNOTAMs for FIR segment EDDU-02 classified
as flight critical for the descent flight phase, respectively.

Semantic containers may also contain other types of data items relevant for pilot briefings, classified
along different dimensions [22], which allows for the representation of an enhanced PIB (ePIB [23])
that also includes information beyond DNOTAMs, e.g., meteorological (MET) information such as
METAR and TAF messages in digital form. Rule-based approaches similar to SemNOTAM could also be
devised for messages other than DNOTAMs (cf. [24]). Indeed, an electronic flight bag (EFB) platform

3 See http://www.icas.org/ for further information.
4 https://www.cambridge.org/core/journals/aeronautical-journal

EDITION [01.00.01]

40

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

may display various kinds of relevant ATM information for a flight, depending on the
manufacturer [25]. The question is how to organize relevant information in order to enable
applications to make smart use of it.

In the following, we propose a conceptual framework for further summarization of semantic
containers using merge and abstraction operations, yielding a higher-level management summary of
relevant information. To that end, we adapt the concept of OLAP cubes – i.e., multidimensional data
structures for online analytical processing (OLAP) – and OLAP query operators (see [26] for further
information) to work with information in air traffic management (ATM). We hence propose the notion
of ATM information cube, which hierarchically organizes semantic containers. We assume the
existence of appropriate rule-based filtering mechanisms to collect ATM information into the
containers. The SemNOTAM classification rules [20], for example, provide a first reduction of the
information overload in pilot briefings by packaging DNOTAMs into collections of smaller containers,
analogous to OLAP cubes. These containers can be merged in order to obtain more comprehensive
containers of data items. For example, individual containers with flight critical DNOTAMs and
DNOTAMs about operational restrictions, respectively, are merged into a container with DNOTAMs
that comprise the essential briefing package (see Figure 23); containers with DNOTAMs about different
en-route segments are merged into containers about entire flight information regions (FIRs);
containers with DNOTAMs relevant to the cruise flight phase or descent flight phase, respectively, are
merged into a container relevant for en-route phases in general. The data items can then be further
combined to obtain more abstract data items. For example, individual DNOTAMs concerning specific
runway closures for landing aircraft are combined into one abstract DNOTAM indicating the existence
of a runway closure for landing aircraft in a specific context, with only more general (or abstract)
information about obstructions, hazards, construction activity, etc. given.

Figure 23. Illustration of merge and abstract operations for semantic containers: The semantic containers on the left are
merged into a single container, the contents of which are altered through application of some abstraction operation.

Operational
Restriction

ED
U

U
-0

1

Flight Critical

ED
U

U
-0

2

Essential
Briefing Package

ED
U

U

Merge

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

41

Founding Members

10.2 Background
In this section, we present relevant background information on semantic containers as well as rule-
based filtering and annotation of ATM information. We further discuss related work.

10.2.1 Rule-based filtering and annotation of ATM information
The metadata-centric semantic container approach needs to be complemented by information
processing and reasoning techniques at the instance level – in order to derive the actual content of
semantic containers – as provided by the SemNOTAM approach [20]. The SemNOTAM approach comes
with a mix of techniques necessary to cope with the complexity of ATM domain knowledge and of the
filtering and annotation task [27].

In the SemNOTAM approach, the SemNOTAM engine receives ATM information, i.e., a set of
DNOTAMs, and the user's interest specification as input, translates the input into a representation that
suits knowledge-based reasoning, selects from its knowledge base the relevant set of filtering and
annotation rules and lets the knowledge-base reasoner execute these rules against the ATM
information. The result of the reasoning process – a filtered and enriched set of DNOTAMs – is provided
to the user, who typically is a pilot or air traffic controller.

Combining SemNOTAM with BEST's semantic container approach, the input and output of the
SemNOTAM engine are the contents of semantic containers. Different instances of SemNOTAM, with
different configurations and rules, may then act as information services in derivation chains of
semantic containers.

10.2.2 Related work
Traditional OLAP systems work on multidimensional models with numeric measures (see [26]). Going
beyond numeric measures, InfoNetOLAP [28], which is also known as graph OLAP, associates weighted
graphs with dimension attributes. Topological and informational roll-up are the basic kinds of
operations, akin to merge and abstraction operations presented in this paper. The focus of graph OLAP,
however, are weighted directed graphs with highly structured and homogeneous data not suited for
ATM information with its rich schema.

ATM information cubes build on the ideas developed in our previous work [29], where we propose the
use of business model ontologies for the management and summarization of rich information in OLAP
cubes. In that approach, the cells of an OLAP cube are associated with entire RDF graphs, each
representing knowledge that applies to a particular context.

10.3 Data container management using ATM information cubes
A semantic container is a flexible data structure for storing ATM data items and central to our notion
of ATM information cube. For the purposes of this paper, we formally define the notion of semantic
container as follows.

We now arrange semantic containers in ATM information cubes along multiple dimensions (or facets)
of content description. For that arrangement of semantic containers, we borrow the data cube
metaphor from data warehousing and OLAP (see [26]): The dimensions span a multidimensional space
where each point associates numeric values – the measures. In the case of ATM information cubes,
however, the associated values are sets of ATM messages, e.g., DNOTAMs or METARs, rather than

EDITION [01.00.01]

42

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

numeric values. Each semantic container hence becomes associated with a point in a multidimensional
space according to the container's semantic label.

Consider, for example, the three-dimensional ATM information cube in Figure 25. Individual DNOTAMs
are collected into semantic containers along geographic, importance, and scenario dimensions. Each
semantic container in that cube hence contains DNOTAMs describing a specific scenario (see [30]) for
a specific geographic segment within a FIR with some importance, e.g., operational restriction or flight
critical, for the flight and date which the cube has been defined for. The coordinates of a container
correspond to a semantic description of the data items inside the container. For example, the point
identified by TS-LOWW-01, Flight Critical, and Runway Closure indicates that the associated semantic
container comprises all DNOTAMs about runway closures that are flight critical for the TS-LOWW-01
transition segment. Now the attentive reader will remark two things. First, nowhere in the model has
the data item type been fixed to “DNOTAM”. Second, the importance of a DNOTAM depends on many
things, first and foremost on the particular flight. Yet, the specific flight is not a dimension of the cube,
nor is the date or the flight phase, which also influence importance. Both of these objections could be
countered by the introduction of additional dimensions: for the item type, the flight, the date, and the
flight phase. The cube associates containers only with points of a certain item type, flight, or date. On
the other hand, item type, flight, and date could be implicit constants that set a context for the cube.
In that case, we would build a separate cube of DNOTAMs for each flight and date. The pilot could
dynamically select containers of DNOTAMs along the dimensions within that context only.
Furthermore, a cube of ATM information cubes could organize multiple individual cubes and explicitly
represent the otherwise tacit context information (explained later).

In order to allow for roll-up operations, i.e., viewing the contents at different levels of granularity, an
OLAP cube employs hierarchically organized dimensions. In the case of ATM information cubes, the
roll-up operation corresponds to a merge (see Section 10.4).

Figure 24. An example ATM information cube with geographic, importance, and scenario dimensions

Operational
Restriction

TS
-L

O
W

W
-0

1

Flight
Critical

TS
-L

O
W

W
-0

2
TS

-L
ZI

B-
01

TS
-L

ZI
B-

02

Potential
Hazard

Additional
Information

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

43

Founding Members

Consider, for example, the dimension hierarchies in Figure 25, which illustrates hierarchies for the
dimensions of the ATM information cube from Figure 24, namely importance, geographic, and scenario
dimensions. The importance dimension hierarchy follows the importance classification system for
DNOTAMs from SemNOTAM [20]. The scenario dimension hierarchy follows the organization of the
FAA's document on airport operations scenarios [30]. The geographic dimension hierarchy consists
only of segments on transitions to airports, which are assigned to a FIR. We note that alternative roll-
up relationships could be defined to allow for different geographic organization.

A common issue for business intelligence applications are null values – i.e., missing, unknown, or
invalid values – for dimension attributes (see [31, pp. 207-208]), which applications must handle
appropriately. Otherwise, null values may result in “misleading or inaccurate results” [31, p. 208].
Similarly, when collecting ATM messages into semantic containers, e.g., along an importance
dimension, in some cases, the messages may not be assigned to any one particular member, e.g.,
importance class (see [20]). On the one hand, there could be custom null values in the dimensions,
e.g., an unknown importance. On the other hand, ATM messages could be directly added to a point of
a higher granularity, e.g., a DNOTAM is known to be in the essential briefing package although it is not
known whether the DNOTAM is flight critical or denotes merely an operational restriction. To that end,
in the following, we introduce the notion of multigranular ATM information cubes.

We have defined an ATM information cube quite generally as associating semantic containers with
points in a multidimensional space. Whereas the example cube in Figure 24 shows an ATM information
cube that associates semantic containers only with the base granularity, i.e., the most specific
granularity level, we may well imagine the existence of a multigranular ATM information cube that also
associates semantic containers with coarser levels of granularity. Consider, for example, the ATM
information cube in Figure 26, which illustrates a cube that associates data items explicitly with, e.g.,
the supplementary briefing package importance classification rather than the more specific potential

Figure 25. Example dimension hierarchies of an ATM data cube: levels (in boldface) and level members

Importance Potential
Hazard

Additional
Information

Operational
Restriction

Flight
Critical

Supplementary
Briefing PackagePackage Essential

Briefing Package

Transition
Segment TS-LOWW-01 TS-LOWW-02

LOVVFIR

Keyword

Scenario Runway
Closure

Runway
Surface Condition

Runway

Taxiway
Closure

Taxiway
Surface Condition

Taxiway

TS-LZIB-01 TS-LZIB-02

LZBB

EDITION [01.00.01]

44

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

hazard or additional information importance classifications that roll up to the supplementary briefing
package.

The points of an ATM information cube at non-base granularities are referred to as higher-level
containers. For example, in Figure 26, the point identified by LZBB, Supplementary Briefing Package,
and Runway has a higher-level container that contains data items associated with the coarser FIR,
package, and keyword granularity.

If some message is flight critical for a segment of the LOVV region then, all other things remaining
unchanged, that message is also in the essential briefing package for the entire LOVV region.

We imagine ATM information cubes being built for a certain operational context, e.g., a specific flight
on some date. In the previous sections, a cube's operational context was nowhere explicitly defined in
the model. Thus, in order to externalize that context, we propose to arrange the ATM information
cubes themselves into multidimensional structures (see Figure 27).

A cube of ATM information cubes (or metacube) hence consists of several cubes, the sets of dimensions
of which will typically overlap but not necessarily be equal. A drill-accross operator allows to combine
the different cubes, joining via the common dimensions, with all non-common dimensions considered
rolled up at the implicit all level. While the dimensions can be manifold, we assume flight, item type,
and date/time as the typical candidates for dimensions. A point in such a metacube may contain, e.g.,
a cube of DNOTAMs relevant for flight OS93 on 15 March 2018.

A pivoting operator allows to obtain a self-contained ATM information cube from a metacube by
adding the metacube dimensions to the component cube. For these added dimensions, the dimension
member is fixed to the respective points from the metacube. For example, the DNOTAM cube for OS93
on 15 March 2018 associates containers only with points that have a value DNOTAM in the item type
dimension, OS93 in the flight dimension, and 15 March 2018 in the date dimension.

Figure 26. A multigranular ATM information cube

Operational
Restriction

TS
-L

O
W

W
-0

1

Flight
Critical

TS
-L

O
W

W
-0

2
TS

-L
ZI

B-
01

TS
-L

ZI
B-

02

Potential
Hazard

Additional
Information

Supplementary
Briefing Package

Essential
Briefing Package

LO
VV

LZ
BB

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

45

Founding Members

10.4 Merge of semantic containers
The organization of semantic containers into ATM information cubes allows for a wide array of
possibilities with respect to container merging. We distinguish a merge-select, a merge-union, and a
merge-intersection operator. We note, however, that other forms of merge operators may also be
conceived in the future.

Intuitively, the merge-select operator applied on a cube q with a set of argument coordinates returns
a single flat container of data items from the containers at the argument coordinates of the input cube
q. The merge-select operator, however, is not closed with respect to ATM information cubes since the
operator takes a cube as input and returns a container as output.

The merge-union and merge-intersection operators are closed with respect to ATM information cubes,
i.e., take a cube as input and return a cube as output. Both operators receive a granularity level g as
input and return a new cube q' that has the granularity level g as the base granularity. The containers
at the base granularity g of the new cube q' are all flat, i.e., elementary and non-composite, and contain
data items from the containers of the input cube q below the new base granularity g. In the case of
merge-union, the operator just selects all the data items. In the case of merge-intersection, the
operator only selects the data items contained in each of the merged containers. We suppose the
merge-union operator is the more common for ATM information cubes.

Figure 28 illustrates the merge-union operator. The depicted cube has a coarser base granularity than
the input cube as seen in Figure 24. The associated containers are elementary. In case the merge
operator was applied on a cube with containers of different item types and the elementary containers
must consist of a single item type, the application of the merge operator must be restricted to
containers of the same item type (elementary or homogeneous composite).

Figure 27. A multigranular ATM information cube

EDITION [01.00.01]

46

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

In OLAP cubes from traditional data warehousing, the “double-counting problem” [26] leads to
summarizability issues [32]. In that case, counting the same numeric measure twice yields erroneous
results. In the case of ATM information cubes, the double-counting problem does not pose an issue.
We may well imagine the same DNOTAM being included in multiple containers. The merge-union
operation would then simply ignore the duplicate data items when compiling the merged semantic
container.

10.5 Abstraction of data items
The notion of abstraction serves as an umbrella term for a wide variety of different operations.
Abstraction, as opposed to merge, is a kind of operations that alter the individual data items and their
relationships to each other. Originally proposed for RDF data (see [29]), the principle of abstraction is
independent from any concrete data or information model.

We employ UML object diagrams to illustrate the principle of the abstraction operation. First, consider
an object diagram that illustrates DNOTAMs according to the AIXM information model (Figure 29).
Note, however, that for simplicity's sake, we adapt AIXM and disregard the AIXM temporality concept
(see [33]). The object diagram then shows two DNOTAMs about the surface conditions of runways,
and two DNOTAMs about the closure of runway directions. The LOWW-16/34 runway has two layers
of contaminants with an overall extend of 0.32 m: dry snow (0.29 m) and ice (0.02 m). The LOWW-
11/29 runway has a layer of ice with an extent of 0.01 m. Both runways, however, have a specified
length and width already cleared of contaminants while the remainder of the runway has winter

Figure 28. A merge of the semantic data containers from Figure 24 along the geographic, importance, and scenario
dimension hierarchies from Figure 25

Essential
Briefing Package

LO
VV

LZ
BB

Supplementary
Briefing Package

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

47

Founding Members

services going on, thus leading two the closure of one runway direction from each runway. The closures
are due to snow and ice removal, respectively, and for each runway affect only one runway direction
whereas the other remains open.

Assume the DNOTAMs in Figure 29 concern the destination airport of a particular flight. Then, a
management summary suitable for the preparation and early phases of that flight might only show a
single, abstracted DNOTAM that alerts the pilot that winterly conditions await at the destination
airport. Consider, thus, the abstracted DNOTAM information inFigure 30, which is the result of
applying some abstraction operator that we do not further specify; we leave the specification of useful
abstraction operators for the ATM domain to future work. The resulting DNOTAM notes only winterly
contaminant for a generic LOWW-Runway, and alerts of runway closure due to winter services.
Summary data are given of the attributes such as the cleared length and width of the contaminated
runways. While the abstracted DNOTAM has only one generic runway contamination, the count
attribute provides documentation of the number of runway contaminations in the original model.

Figure 29. An object diagram of DNOTAMs, simplified and adapted from the AIXM information model [1], disregarding the
temporality concept, with DNOTAM messages classified according to the FAA aiprort operations scenarios [2]

object AIXM

:RunwayClosureNotamMessage

:RunwaySurfaceConditionNotamMessage :RunwaySurfaceConditionNotamMessageLOWW-16/34: Runway

nominalWidth = 45
nominalLength = 3600

LOWW-11/29: Runway

nominalWidth = 45
nominalLength = 3500

:RunwayContamination

clearedWidth = 39
clearedLength = 3000

LOWW-16:
RunwayDirection

LOWW-34:
RunwayDirection

LOWW-11:
RunwayDirection

LOWW-29:
RunwayDirection

:RunwayClosureNotamMessage

:RunwayContamination

clearedWidth = 41
clearedLength = 3100

:ManoeuvringAreaAvailability

operationalStatus = CLOSED

:Note

note = DUE TO SNOW REMOVAL

:Note

note = DUE TO ICE REMOVAL

:ManoeuvringAreaAvailability

operationalStatus = CLOSED

:SurfaceContaminationLayer

layer = 1
type = DRY_SNOW

:SurfaceContaminationLayer

layer = 2
type = ICE

:SurfaceContaminationLayer

type = ICE

:ElevatedSurface

elevation = 0.29 m

:ElevatedSurface

elevation = 0.02 m

:ElevatedSurface

elevation = 0.01 m

+extent

+availability

+usedRunway

+availability

+closedRunwayDirection

+affectedRunway

+usedRunway

+overallContaminant

+contamination

+closedRunwayDirection

+annotation

+extent

+contamination

+affectedRunway

+layer

+annotation

+usedRunway

+overallContaminant

+usedRunway

+availability

+layer +layer

+availability

+extent

EDITION [01.00.01]

48

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 30. An example of abstracted DNOTAM information obtained from the DNOTAM information in Figure 29

object AIXM-Abstract

:RunwayContamination

count = 2
clearedLength-avg = 3050
clearedLength-min = 3000
clearedLength-max = 3100
clearedWidth-avg = 40
clearedWidth-max = 41
clearedWidth-min = 39

LOWW-Runway: Runway

count = 2
nominalWidth-max = 45 m
nominalWidth-min = 45 m
nominalLength-max = 3500 m
nominalLength-min = 3600 m

:ManoeuvringAreaAvailability

count = 2
operationalStatus = CLOSED

:Note

note = DUE TO WINTER SERVICES

:SurfaceContaminationLayer

type = WINTERLY_CONTAMINANT

:ElevatedSurface

elevation-avg = 0.16 m
elevation-max = 0.31 m
elevation-min = 0.01 m

:AbstractedNotamMessage

+contamination

+affectedRunway

+availability

+extent

+annotation

+layer +overallContaminant

D2.2 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

49

Founding Members

The BEST consortium:
SINTEF

Frequentis AG

Johannes
Kepler
Universität
(JKU) Linz

SLOT
Consulting

EUROCONTROL

